Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

SDXL Turbo、LCM相继发布,AI画图进入实时生成时代:字打多快,出图就有多快

使用一块 A100,出图的延迟只有 200 毫秒。

本周二,Stability AI 推出了新一代图像合成模型 Stable Diffusion XL Turbo,引发了一片叫好。人们纷纷表示,图像到文本生成从来没有这么轻松。

你可以不需要其他操作,只用在文本框中输入你的想法,SDXL Turbo 就能够迅速响应,生成对应内容。一边输入,一边生成,内容增加、减少,丝毫不影响它的速度。

图片

你还可以根据已有的图像,更加精细地完成创作。手中只需要拿一张白纸,告诉 SDXL Turbo 你想要一只白猫,字还没打完,小白猫就已经在你的手中了。

图片

SDXL Turbo 模型的速度达到了近乎「实时」的程度,让人不禁开始畅想:图像生成模型是不是可以干些其他事了。

有人直接连着游戏,获得了 2fps 的风格迁移画面:

图片

据官方博客介绍,在 A100 上,SDXL Turbo 可在 207 毫秒内生成 512x512 图像(即时编码 + 单个去噪步骤 + 解码,fp16),其中单个 UNet 前向评估占用了 67 毫秒。

如此,我们可以判断,文生图已经进入「实时」时代。

这样的「即时生成」效率,与前不久爆火的清华 LCM 模型看起来有些相似,但是它们背后的技术内容却有所不同。Stability 在同期发布的一篇研究论文中详细介绍了该模型的内部工作原理。该研究重点提出了一种名为对抗扩散蒸馏(Adversarial Diffusion Distillation,ADD)的技术。SDXL Turbo 声称的优势之一是它与生成对抗网络(GAN)的相似性,特别是在生成单步图像输出方面。

图片

论文地址:https://static1.squarespace.com/static/6213c340453c3f502425776e/t/65663480a92fba51d0e1023f/1701197769659/adversarial_diffusion_distillation.pdf

论文细节

简单来说,对抗扩散蒸馏是一种通用方法,可将预训练扩散模型的推理步数量减少到 1-4 个采样步,同时保持高采样保真度,并有可能进一步提高模型的整体性能。 

为此,研究者引入了两个训练目标的组合:(i)对抗损失和(ii)与 SDS 相对应的蒸馏损失。对抗损失迫使模型在每次前向传递时直接生成位于真实图像流形上的样本,避免了其他蒸馏方法中常见的模糊和其他伪影。蒸馏损失使用另一个预训练(且固定)的 扩散模型作为教师,有效利用其广泛知识,并保留在大型扩散模型中观察到的强组合性。在推理过程中,研究者未使用无分类器指导,进一步减少了内存需求。他们保留了模型通过迭代细化来改进结果的能力,这比之前基于 GAN 的单步方法具有优势。

训练步骤如图 2 所示:

图片

表 1 介绍了消融实验的结果,主要结论如下:

图片

接下来是与其他 SOTA 模型的对比,此处研究者没有采用自动化指标,而是选择了更加可靠的用户偏好评估方法,目标是评估 prompt 遵循情况和整体图像。

实验通过使用相同的 prompt 生成输出来比较多个不同的模型变体(StyleGAN-T++、OpenMUSE、IF-XL、SDXL 和 LCM-XL)。在盲测中,SDXL Turbo 以单步击败 LCM-XL 的 4 步配置,并且仅用 4 步击败 SDXL 的 50 步配置。通过这些结果,可以看到 SDXL Turbo 的性能优于最先进的 multi-step 模型,其计算要求显著降低,而无需牺牲图像质量。

图片

图 7 可视化了有关推理速度的 ELO 分数。

图片

表 2 比较了使用相同基础模型的不同 few-step 采样和蒸馏方法。结果显示,ADD 的性能优于所有其他方法,包括 8 步的标准 DPM 求解器。

图片

作为定量实验结果的补充,论文也展示了部分定性实验结果,展示了 ADD-XL 在初始样本基础上的改进能力。图 3 将 ADD-XL(1 step)与 few-step 方案中当前最佳基线进行了比较。图 4 介绍了 ADD-XL 的迭代采样过程。图 8 将 ADD-XL 与其教师模型 SDXL-Base 进行了直接比较。正如用户研究所示,ADD-XL 在质量和 prompt 对齐方面都优于教师模型。

图片

图片

图片

更多研究细节,可参考原论文。

工程Stability AIStable Diffusion XL Turbo对抗扩散蒸馏
相关数据
图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

文本生成技术

文本生成是生成文本的任务,其目的是使人类书写文本难以区分。

生成对抗技术

生成对抗是训练生成对抗网络时,两个神经网络相互博弈的过程。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。

推荐文章
暂无评论
暂无评论~