Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

Hideonbush作者

约束优化的拉格朗日乘子(KKT)

  • 拉格朗日乘数法

  • 约束条件的集中形式

  • 求解不同约束条件问题的最优方法

本文讨论带有约束条件的最优化问题,约束条件分为两种,一种是等式约束;另一种是不等式约束。对于第一种等式约束的优化问题,可以直接利用拉格朗日乘子法去获得最优解;对于不等式约束的优化问题,可以转化未Karush–Kuhn–Tucker conditions(KKT条件)下去应用拉格朗日乘子法求解。也就是说都是应用拉格朗日乘数法求解。

一、拉格朗日乘数法

拉格朗日乘数法是一种优化算法,主要运用于解决优化问题,它的基本思想就是用过拉格朗日乘子来把含有m个变量和l个约束条件的约束优化问题转换成含有(m+l)个变量的无约束优化问题。

二、约束条件的集中形式


三、求解不同约束条件问题的最优方法

(1)等式条件下求最优解:

其实,高中的时候已经接触过等式条件机制求最优解的问题,都知道用拉格朗日乘数法可以求得最优解。首先构建一个Lagrange multiplier:

构建出 L(x,y,λ) 后,跟原来的问题对比一下,构建出的Lagrange multiplier把原来的等数条件约束情况变成含三个参数 (x,y,λ) 无条件极值的问题,最后可以通过求导数,令极值为零可以求出可行解 x 。

(拉格朗日乘子求的解不一定是最优解,其实只是局部最优解,这里称作可行解,只有在凸函数中才能保证最优解)至于为什么可以把原始的等式条件极值问题转化成求 L(x,y,λ) 的极值问题?可以观察一下下面的二维图:

图一

蓝色虚线是目标函数 f(x,y) 的等高线,绿色实现 g(x,y)=c 是约束条件。图中,目标函数和条件函数有三种情况:

1、相离

对于相离的情况,我们以前学过,两个函数有交点才说明是两个函数的解,所以相离明显不行。

2、相交

两个函数相交的才是两个函数的解,但是相交得到的一定不是最优值,因为相交意味着肯定还存在其它的等高线在该条等高线的内部或者外部,使得新的等高线与目标函数的交点的值更大或者更小。

3、相切

图中,等高线与条件函数相切时候,只有一个交点,是可行解。

当等高线与条件函数在可行解处(相切时候)的梯度平行有下式:

对上式子移项后,可得到:

该式子恰好与令Lagrange multiplier的导数为零是式子相同。

举一个小栗子:

根据上式子可知是一个典型的约束优化问题,约束条件是等式,可以用拉格朗日乘子。

原来的条件约束问题,转化为无约束方程组问题。

(2)不等式条件下求最优解

上述都是等式条件约束的优化问题,但事实上,很多时候等式约束很难覆盖我们显示的问题,计算成本时候,通常说不能超过多少资金,不能超多多少时间,都是一个范围内,通常面对更多的是不等式条件约束的情况,面对这种情况,可以通过增加KKT条件后,通过拉格朗日乘子求解不等式约束的优化问题。

可以把目标函数和所有的约束条件写成一个式子:

对于不等式条件的情况有两种:即可行解在 g(x)<0 或者 g(x)=0 区域内取得(如下图)

图二

原文来自学员知乎作业

https://zhuanlan.zhihu.com/p/55532322

贪心科技
贪心科技

贪心科技——让AIGC塑造人机协作新范式。 贪心科技是一家人工智能科技公司,主要从事行业大模型的研发,面向企业的大模型落地,以及AIGC技术的全面普及。公司的主要产品包括 AIGC实验室平台(AIGC for Everyone), 面向垂直行业的大模型产品(教育、人力资源、智能制造等行业),和企业级Copilot生成平台。

入门KKT拉格朗日乘数法最优化问题
6
相关数据
参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

导数技术

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x_0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x_0) 或 df(x_0)/dx。

运筹优化技术

最优化问题(英语:Optimization problem)在数学与计算机科学领域中,是从所有可行解中寻找最优良的解的问题。根据变数是连续的或离散的,最佳化问题可分为两类:连续最佳化问题与组合优化。

目标函数技术

目标函数f(x)就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。

知乎机构

知乎,中文互联网综合性内容平台,自 2010 年成立以来,知乎凭借认真、专业、友善的社区氛围,独特的产品机制,以及结构化、易获得的优质内容,聚集了中文互联网科技、商业、影视、时尚、文化等领域最具创造力的人群,已成为综合性、全品类,在诸多领域具有关键影响力的内容平台。知乎将AI广泛应用与社区,构建了人、内容之间的多元连接,提升了社区的运转效率和用户体验。知乎通过内容生产、分发,社区治理等领域的AI应用,也创造了独有的技术优势和社区AI创新样本。

zhihu.com
推荐文章
暂无评论
暂无评论~