Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

蒋宝尚编译

量化评估、算法拓展:强化学习研究的10大原则

今年9月份举办的深度学习Indaba2018峰会的干货确实不少,昨天文摘菌给大家整理了27位大咖关于自然语言处理的精彩问答。今天文摘菌再给大家整理一份关于强化学习的10个原则,不仅在强化学习中有用,在机器学习研究中也能够提供一些参考。

这10个原则是一位来自Insight数据分析研究中心的博士生Sebastian Ruder在参会期间对David Silver报告进行的整理,除了Ruder自己的解析外,也把他自己拍的照片分享了出来。

评估推动进步

量化的评估才能推动进步。评估奖励的选择决定了进步的方向,要确保评估指标与目标密切相关,避免主观评价(例如人类学科)。还有一点,双Q学习优于单Q学习,因为后者能减少偏见。

算法的可扩展性决定成功

算法如何扩展非常重要,要避免性能上限。深度学习非常棒,因为它可以有效地扩展,但是样本效率同样重要。

算法的可扩展性的表现取决于资源,而算法的可扩展性决定是否成功:那么给予更多资源,性能如何提高?值得一提的是,这里的资源指的是计算,内存或数据。

通用性,即算法在其他任务上的表现非常重要

关键是要设计一系列具有挑战性的任务,即应该对不同的新任务进行评估。避免过度使用当前的任务。

相信Agent的经验

不要依赖人类的专业知识,不要依赖于工程特征。在数据有限时,领域专业知识和归纳偏差非常重要。

一些任务可能看起来不太可能完成,但是,你确实能在其中学到很多经验。这种任务或者项目,通常满足这三点:

1.很难接受RL的核心问题。

1.是AI的核心问题

3.非常值得你去努力

状态应该是主观的

应将状态建立为模型的状态,即RNN的隐藏状态,而不是根据环境定义。只有agent对世界的主观看法才是重要的。不要推理外部现实,因为达到的效果非常有限。

控制流

Agent影响数据流和体验。Agent应该有能够访问控制环境的功能。重点不仅在于最大化奖励,还在于建立对流的控制。

价值函数塑造世界

价值函数有效地总结了当前和未来的状况。多值函数允许我们模拟世界的多个方面。可以帮助控制流。

从想象的经验(imagined experience)中学习

接下来该怎样规划?同样的,RL算法可以从想象的经验(imagined experience)中学习,如Alphago中使用MCTS和值函数。

利用函数逼近器

可以将算法复杂度揉进神经网络架构,甚至MCTS,分层控制等也可以用NN建模。然后要真正理解:我们从模型学到了什么。

学会学习

必须精通元学习,然后,你可能不再需要手工设置网络架构,一切都是端到端学习。总而言之,神经网络要通过尽可能少的人工干预来处理事情。但是,归纳偏差应该仍然有用。

相关报道:https://twitter.com/seb_ruder/status/1040235236284669952?utm_campaign=NLP%20News&utm_medium=email&utm_source=Revue%20newsletter

大数据文摘
大数据文摘

秉承“普及数据思维,传播数据文化,助⼒产业发展”的企业⽂化,我们专注于数据领域的资讯、案例、技术,形成了“媒体+教育+⼈才服务”的良性⽣态,致⼒于打造精准数据科学社区。

入门机器学习强化学习
3
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

元学习技术

元学习是机器学习的一个子领域,是将自动学习算法应用于机器学习实验的元数据上。现在的 AI 系统可以通过大量时间和经验从头学习一项复杂技能。但是,我们如果想使智能体掌握多种技能、适应多种环境,则不应该从头开始在每一个环境中训练每一项技能,而是需要智能体通过对以往经验的再利用来学习如何学习多项新任务,因此我们不应该独立地训练每一个新任务。这种学习如何学习的方法,又叫元学习(meta-learning),是通往可持续学习多项新任务的多面智能体的必经之路。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

推荐文章
暂无评论
暂无评论~