Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

痴笑作者

AI处理器 ×PU 一次全看清!

我首先,我们要提出一个AI时代的XPU版摩尔定律

每过18天,集成电路领域将多出一个xPU,直到26个字母被用完。

据不完全统计,已经被用掉的有:

APU -- Accelerated Processing Unit, 加速处理器,AMD公司推出加速图像处理芯片产品。

BPU -- Brain Processing Unit, 地平线公司主导的嵌入式处理器架构,并应用于器ADAS产品中。

CPU -- Central Processing Unit 中央处理器, 目前PC core的主流产品。

DPU -- Dataflow Processing Unit 数据流处理器, Wave Computing 公司提出的AI架构;Data storage Processing Unit,深圳大普微的智能固态硬盘处理器。

FPU -- Floating Processing Unit 浮点计算单元,通用处理器中的浮点运算模块。

GPU -- Graphics Processing Unit, 图形处理器,采用多线程SIMD架构,虽然为图形处理而生,但在Nvidia的人工智能布局下,成为了人工智能算法的主要硬件选项。

HPU -- Holographics Processing Unit 全息图像处理器, 微软出品的全息计算芯片与设备。

IPU -- Intelligence Processing Unit, Deep Mind投资的Graphcore公司出品的AI处理器产品。

MPU/MCU -- Microprocessor/Micro controller Unit, 微处理器/微控制器,一般用于低计算应用的RISC计算机体系架构产品,如ARM-M系列处理器。

NPU -- Neural Network Processing Unit,神经网络处理器,是基于神经网络算法与加速的新型处理器总称,如中科院计算所/寒武纪公司出品的diannao系列。

RPU -- Radio Processing Unit, 无线电处理器, Imagination Technologies 公司推出的集合集Wifi/蓝牙/FM/处理器为单片的处理器。

TPU -- Tensor Processing Unit 张量处理器, Google 公司推出的加速人工智能算法的专用处理器。目前一代TPU面向Inference,二代面向训练。

VPU -- Vector Processing Unit 矢量处理器,Intel收购的Movidius公司推出的图像处理与人工智能的专用芯片的加速计算核心。

WPU -- Wearable Processing Unit, 可穿戴处理器,Ineda Systems公司推出的可穿戴片上系统产品,包含GPU/MIPS CPU等IP。

XPU --  百度与Xilinx公司在2017年Hotchips大会上发布的FPGA智能云加速,含256核。

ZPU -- Zylin Processing Unit, 由挪威Zylin 公司推出的一款32位开源处理器。

当一个26个字幕被用完后,即将出现xxPU,xxxPU,并以更快的速度占领起名界。

欢迎补充!

矽说
矽说

入门摩尔定律图像处理神经网络
相关数据
张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

张量处理器技术

张量处理器(英语:tensor processing unit,缩写:TPU)是Google为机器学习定制的专用芯片(ASIC),专为Google的深度学习框架TensorFlow而设计。 与图形处理器(GPU)相比,TPU采用低精度(8位)计算,以降低每步操作使用的晶体管数量。降低精度对于深度学习的准确度影响很小,但却可以大幅降低功耗、加快运算速度。同时,TPU使用了脉动阵列的设计,用来优化矩阵乘法与卷积运算,减少I/O操作。此外,TPU还采用了更大的片上内存,以此减少对DRAM的访问,从而更大程度地提升性能。

图像处理技术

图像处理是指对图像进行分析、加工和处理,使其满足视觉、心理或其他要求的技术。 图像处理是信号处理在图像领域上的一个应用。 目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。

摩尔定律技术

摩尔定律是由英特尔创始人之一戈登·摩尔提出来的。其内容为:积体电路上可容纳的电晶体数目,约每隔两年便会增加一倍;经常被引用的“18个月”,是由英特尔首席执行官大卫·豪斯所说:预计18个月会将芯片的性能提高一倍。

推荐文章
暂无评论
暂无评论~