Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

付彦伟作者

小样本学习年度进展|VALSE2018

 编者按:子曰:“举一隅不以三隅反,则不复也”。

人类从少量样本中去思考,还能用这个做什么;而机器则是见到了上亿的数据,却希望下一个与之前的相似。

机器学习领域中,随着更多应用场景的涌现,我们越来越面临着样本数量不足的问题。因此,如何通过举一反三的方式进行小样本学习,成为了一个重要的研究方向。

本文中,复旦大学的付彦伟教授,将介绍过去一年中小样本学习领域的研究进展。

文末,大讲堂提供文中提到参考文献的下载链接。

本次报告主要回顾one-shot learning,也可以称为few-shot learning或low-shot learning领域最近的进展。

首先,one-shot learning产生的动机大家都比较了解。现在在互联网,我们主要用large-scale方法处理数据,但真实情况下,大部分类别我们没有数据积累,large-scale方法不完全适用。所以我们希望在学习了一定类别的大量数据后,对于新的类别,我们只需要少量的样本就能快速学习。

存在的问题一方面是知识缺失,另一方面是需要大量的训练样本。第一点在本文中不做讨论。

对于第二点,目前考虑的解决方法主要有两个:

第一个是人能够识别一个从没有见过的物体,也就是zero-shot learning;

第二个是从已有任务中学习知识,将其应用到未来模型训练中,可以认为是一个迁移学习的问题。

那么我们如何定义one-shot learning呢? 它的目的是从一个或几个图像样本中学习类别信息。但我们这里的one-shot learning并不限于一般图像,也可以在文本,医疗图像等特殊图像,或者物理化学中的扫描图像上进行应用。

One-shot learning的研究主要分为如下几类:

第一类方法是直接基于有监督学习的方法,这是指没有其他的数据源,不将其作为一个迁移学习的问题看待,只利用这些小样本,在现有信息上训练模型,然后做分类;

第二个是基于迁移学习的方法,是指有其他数据源时,利用这些辅助数据集去做迁移学习。这是我今年一篇综述里提到的模型分类。

对于第一类直接进行有监督学习的方法,可以做基于实例的学习,比如KNN,以及非参数方法。

而基于迁移学习的one-shot learning,首先是基于属性的学习,比如我们最早在做zero-shot learning的时候,会顺便做one-shot learning,把特征投影到一个属性空间,然后在这个属性空间中既可以做one-shot learning,又可以做zero-shot learning,但是每个类别都需要属性标注,也就是需要额外的信息。最近的机器学习领域里,所讨论one-shot learning一般不假设我们知道这些额外信息,大体上可以被分为meta-learning,或者metric-learning。 Meta-learning从数据中学习一种泛化的表示,这种泛化的表示可以被直接用于目标数据上,小样本的类别学习过程。Metric-learning从数据源中构建一个空间。但是本质上meta-learning和metric-learning还是有很多相似的地方。

接下来是数据增强,这其实是很重要也很容易被忽视的一点,可以有很多方法来实现:

第一,利用流信息学习one-shot模型,常见的有半监督学习和transductive learning,探讨的是如何用无标签数据去做one-shot learning。

第二,在有预训练模型时,用这些预训练模型进行数据增强。

第三,从相近的类别借用数据,来增强训练数据集。

第四,合成新的有标签训练数据,用一些遥感里的方法,可以合成一些图像,或者3d物体。

第五,用GAN来学习合成模型,比如最近用GAN来做personal ID和人脸相关研究。

第六,属性引导的增强方法。具体大家可以在文章里进行详细了解。

首先基于迁移学习的方法,我们目前的实验结果显示:大部分已经发表的one-shot learning方法在miniImageNet数据集上的结果,比不过resnet-18的结果,这也是很微妙的一点。我们的代码已经放到github上,大家有兴趣可以看一下。(如果我们的实验在什么地方有问题,欢迎大家给我发邮件)

下面简单介绍相关文章。首先是Wang Yuxiong的文章Learning to Learn: Model Regression Networks for Easy Small Sample Learning,他们用原数据构建了很多模型库,然后目标数据直接回归这些模型库。具体就是在source class上训练一个regression network。对于大量样本我们可以得到一个比较好的分类器。对于少量样本我们可以得到一个没那么好的分类器。这个regression network的目的就是把没那么好的分类器映射成比较好的分类器。即,把一个分类器的权重映射到另一个分类器。

第二个是Matching Networks for One Shot Learning,这个文章很有意思,从标题中就能读出大概做了什么工作。对于一张图片,我们训练一个matching network来提取它的feature。然后用一个简单的数学公式来判断feature之间的距离。对于新的图片,根据它与已知图片的距离来进行分类。这篇文章精巧地设计了训练的过程,来使得这个过程与测试时的过程一致。

第三是MAML,是与模型无关的meta-learning的方法,它主要侧重于深度网络的快速适应。这篇文章的思想就是找到一个网络最好的初始位置,这个初始位置被定义为:经过几个小样本的调整后可以得到最好的表现。

第四个是Optimization as a model for few-shot learning,也是meta-learning的方法,将任务组织成一个最优化的问题。这篇文章将梯度下降的过程与LSTM的更新相对比,发现它们非常相似。所以可以用LSTM来学习梯度下降的过程,以此使用LSTM来做梯度下降的工作。

第五个是meta networks,也是meta-learning方法。其中利用了少量样本在基础网络中产生的梯度,来快速生成新的参数权重

今年NIPS一篇prototypical network,主要是在matching networks的基础上做了一些更改。它们给每一个类一个原型,样本与类的距离就是样本与原型的距离。然后选用欧氏距离替代了matching network的余弦距离。

今年CVPR的Learning to compare: Relation network for few-shot learning。简单来说就是用embedding module来提取feature。然后用relation module来输出两个feature之间的距离。一次来通过距离进行分类选择。

关于on-shot learning,还有其他参考文献,可在文末的链接中下载。

下面简单介绍一下数据增强的相关文章。

上图是我们今年的提交到ECCV的一个工作,用左边的encoder-trinet把视觉特征映射到语义空间。因为语义空间上有更丰富的信息,可以在语义空间上做数据扩充(添加高斯噪声和寻找最近邻),再映射回视觉空间来得到更多的扩充样例。

ICCV2017这篇文章根据已有的图像去生成新的图像,然后做low-shot 视觉识别。具体来说,比如说你有三张图片:一张是鸟,一张是鸟站在树枝上,一张是猴子。那么你可以学习一个网络让它生成猴子站在树枝上的图片。本质上是,想把一个类的变化迁移到另一个类上,以此来做数据扩充。

这是去年在CVPR上发表的文章AGA,主要针对3D数据,把图像投影到一个属性空间做数据增强。这是一个few-shot learning方法。具体就是,给定几张距离观测者不同距离的桌子的照片,以及一张凳子的照片,让机器学会如何去生成不同距离的凳子的照片,以此来做数据扩充。

最后在 one-shot learning之上,我们还可能遇到一个问题,one-shot learning只关注目标类别上的分类问题,我们希望学习到的模型对源数据类别也适用,否则将带来一个问题,被称为灾难性遗忘。

发表在PNAS的文章提出EWC 模型来解决这个问题。灾难性遗忘往往源于我们学习任务B的时候更新网络,使得任务A做的没那么好了。EWC提供了一种方法来计算权重对于任务A的重要性,把重要性引入到损失函数中,来避免更改会影响A效果的权重

还有learning without forgetting这篇文章,也是侧重于解决这个问题。简单来说就是拿到一个新任务后,我们会更新网络。我们希望在更新网络前后网络没有太大变化,所以我们添加一个loss来限制网络更新前后对于这个新的任务输出的特征不能有太大变化,也就是一个distill loss。

最后,小样本学习还有很多可以研究的东西。目前的成果主要还是基于把已知类别的一些信息迁移到新的类别上。可能未来可以尝试下更多的方向,比如利用无监督的信息或者是半监督的方法。

参考文献链接:

https://pan.baidu.com/s/1yzoSeuaZvMjKMQlMfD1Yzw 

密码: xmap


深度学习大讲堂
深度学习大讲堂

高质量原创内容平台,邀请学术界、工业界一线专家撰稿,致力于推送人工智能与深度学习最新技术、产品和活动信息。

入门小样本学习
31
相关数据
半监督学习技术

半监督学习属于无监督学习(没有任何标记的训练数据)和监督学习(完全标记的训练数据)之间。许多机器学习研究人员发现,将未标记数据与少量标记数据结合使用可以显着提高学习准确性。对于学习问题的标记数据的获取通常需要熟练的人类代理(例如转录音频片段)或物理实验(例如,确定蛋白质的3D结构或确定在特定位置处是否存在油)。因此与标签处理相关的成本可能使得完全标注的训练集不可行,而获取未标记的数据相对便宜。在这种情况下,半监督学习可能具有很大的实用价值。半监督学习对机器学习也是理论上的兴趣,也是人类学习的典范。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

梯度下降技术

梯度下降是用于查找函数最小值的一阶迭代优化算法。 要使用梯度下降找到函数的局部最小值,可以采用与当前点的函数梯度(或近似梯度)的负值成比例的步骤。 如果采取的步骤与梯度的正值成比例,则接近该函数的局部最大值,被称为梯度上升。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

分类问题技术

分类问题是数据挖掘处理的一个重要组成部分,在机器学习领域,分类问题通常被认为属于监督式学习(supervised learning),也就是说,分类问题的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。根据类别的数量还可以进一步将分类问题划分为二元分类(binary classification)和多元分类(multiclass classification)。

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

推荐文章
文中说代码已经放到了github,请问可以提供链接吗