细粒度图像识别和检索的差异有哪些呢?细粒度视觉有哪些重要实际应用及重要场景呢?未来细粒度图像分析领域又会如何发展呢?
Auto Byte
专注未来出行及智能汽车科技
微信扫一扫获取更多资讯
Science AI
关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展
微信扫一扫获取更多资讯
细粒度图像识别和检索的差异有哪些呢?细粒度视觉有哪些重要实际应用及重要场景呢?未来细粒度图像分析领域又会如何发展呢?
随着深度学习技术的进展,如何通过深度学习对三维数据进行学习并提高几何处理方法的智能性成为近期研究工作的热点。
随着人工智能的飞速发展,相关领域学术会议和期刊的投稿量剧增。面对大量良莠不齐的学术论文,研究人员又该秉承什么理念来撰写、评审相关领域的学术论文?
深度神经网络的压缩与加速是近年来非常热门的一个研究课题,该技术有着强大的技能。但是在实际应用中,会带来哪些问题呢?
在本文中,复旦大学付彦伟、上海科技大学何旭明、北京邮电大学马占宇、中科院计算所王瑞平(按发言顺序整理),将答疑解惑探讨小样本学习的最新进展。
视觉中的情感计算是近年来计算机视觉领域的热点问题,针对其当前阶段的突出痛点、发展趋势、应用难点、研究方向等问题,北京邮电大学邓伟洪、中科院计算所山世光、中国科学技术大学王上飞、中科院计算所曾加贝(按发言顺序整理)展开深度探讨。
作者提出了一种基于视频流的自监督特征表达方法,通过利用巧妙的自监督约束信号, 得到提纯的面部动作特征用于微表情识别。
古人云“三人行必有我师焉”,本文作者提出了一种“深度互学习Deep Mutual Learning”策略,使得小网络之间能够互相学习共同进步。
正所谓“他山之石,可以攻玉”,本文作者提出了融合一二步法思想的RefineDet物体检测算法,在保持一步法速度的前提下,获得了二步法的精度。
本文中,将为大家介绍中科院计算所VIPL组的CVPR2019新作:作者提出了一种基于噪声正则化的弱监督图像分类方法。
本文作者提出了基于动量的迭代算法来构造对抗扰动,有效地减轻了白盒攻击成功率和迁移性能之间的耦合,并能够同时成功攻击白盒和黑盒模型。
今天,来自中科院自动化所的何晖光研究员为我们带来题为“多模态情绪识别及跨被试迁移学习”的讲座。
本文中,来自大连理工大学的刘日升副教授,将为大家介绍基于Unrolling的深度方法及应用。文末提供文中提到参考文献的下载链接。
本文经授权转自我爱计算机视觉52CV。
本文将介绍一种结构推理网络(Structure Inference Net,简称SIN),将物体检测问题形式化为图结构推理,采用图结构同时建模物体细节特征、场景上下文、以及物体之间关系,采用门控循环单元(GRU)的消息传递机制对图像中物体的类别和位置进行联合推理。
本文中,地平线联合创始人、美国西北大学杨铭博士,来和大家分享“在芯片上加速神经网络用于视觉任务的挑战”。