拳打Adam,脚踢SGD:北大提出全新优化算法AdaBound
在论文《Adaptive Gradient Methods with Dynamic Bound of Learning Rate》中,研究人员提出了一种新型优化方法 AdaBound,「和 Adam一样快、和 SGD一样好」。据了解,四位作者 Liangchen Luo、Yuanhao Xiong、Yan Liu、Xu Sun 均来自国内。共同一作骆梁宸和 Yuanhao Xiong 分别来自北京大学和浙江大学,Yan Liu 来自南加州大学,Xu Sun 来自北京大学。而且一作骆梁宸是北京大学的本科生。作者在 reddit 网站发帖介绍了这项研究,并提供了 PyTorch 实现。他们目前在 MNIST 和 CIFAR-10 数据集做了测试,但由于计算资源有限而无法选择 ImageNet 等大数据集。此外,作者还表示 AdaBound 可以直接通过 pip 安装,不过使用 AdaBound 不意味着不用调参,只不过 AdaBound 可以帮助大家减少所需要的时间。