英伟达再出GAN神作!多层次特征的风格迁移人脸生成器
GAN 自 2014 年提出以来得到了广泛应用。前不久效果令人震惊的 ICLR 2019 论文 BigGAN 引发了众多关注。去年英伟达投稿 ICLR 2018 的论文《Progressive Growing of GANs for Improved Quality, Stability, and Variation》效果也很惊艳。12 月 14 日, PGGAN 的作者再发论文《A Style-Based Generator Architecture for Generative Adversarial Networks》,这次的效果更加真实。据悉,这款新型 GAN 生成器架构借鉴了风格迁移研究,可对高级属性(如姿势、身份)进行自动学习和无监督分割,且生成图像还具备随机变化(如雀斑、头发)。该架构可以对图像合成进行直观、规模化的控制,在传统的分布质量指标上达到了当前最优,展示了更好的插值属性,并且能够更好地将潜在的变差因素解纠缠。