CVPR 2019 | 全新缺失图像数据插补框架—CollaGAN
在同一域下的图像和数据是符合一个整体流形分布的,一旦域中的数据缺失,能否利用已有的域中数据去还原丢失的数据呢?在论文《CollaGAN : Collaborative GAN for Missing Image Data Imputation》中,Collaborative GAN 提出了一种新的缺失图像数据插补框架,称为协同生成对抗网络 (CollaGAN)。CollaGAN 是在现在已经成熟的单图像到图像生成的基础上,研究多域图像到图像的翻译任务,以便单个生成器和判别器网络可以使用剩余的干净数据集成功估计丢失的数据。