性能SOTA、适用多种类型物体,国防科技大学单张RGB-D图像预测物体对称性
作为大多数物体的基本几何属性,对称性广泛存在于我们的生活中。理解物体的对称性是计算机理解真实世界以及机器人智能交互中的重要问题。因此,对称性检测在图像分割、物体检测以及机械臂抓取等任务中有着广泛的应用前景。三维物体对称性检测是经典的几何问题,由于对称性具有明确的数学定义(即物体在进行对称变换后具有几何不变性),传统的三维对称检测方法往往首先检测对称对应点(symmetric counterpart),再通过聚类或投票算法得到物体的对称面 / 轴。但是,这类算法的使用范围通常仅限于几何完整的合成三维模型或者高质量的重建三维模型,无法处理物体观测缺失的情况,例如无法通过单张 RGB-D 图像判断物体的对称性。近日,国防科技大学和普林斯顿大学的研究者提出面向单张 RGB-D 图像的对称检测网络 SymmetryNet,相关论文被 ACM Transactions on Graphics (SIGGRAPH Asia 2020) 收录。