TextIn人脸伪造检测基于CNN+ViT技术框架实现,核心在于通过大批量不同来源、生成技术的Deepfake样本训练,提供随伪造技术同步成长的防伪手段。
Auto Byte
专注未来出行及智能汽车科技
微信扫一扫获取更多资讯
Science AI
关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展
微信扫一扫获取更多资讯
TextIn人脸伪造检测基于CNN+ViT技术框架实现,核心在于通过大批量不同来源、生成技术的Deepfake样本训练,提供随伪造技术同步成长的防伪手段。
基于transformer的大语言模型(LLM)中的软注意很容易将上下文中的不相关信息合并到其潜在的表征中,论文引入了System 2 Attention(S2A),它利用LLM的能力,用自然语言进行推理,以决定要处理什么,纠正了这些问题。
论文进行了一场RLHF与来自人工智能反馈的RL的比较(RLAIF) 一种由现成的LLM代替人类标记偏好的技术,论文发现它们能带来相似的改善。
本文演示了一种学习高度语义的图像表示的方法,而不依赖于手工制作的数据增强。论文介绍了基于图像的联合嵌入预测架构(I-JEPA),这是一种用于从图像中进行自监督学习的非生成性方法。
基本的算法,如排序或哈希,在任何一天都被使用数万亿次。随着对计算需求的增长,这些算法的性能变得至关重要。
OCR是一项科技革新,通过自动化大幅减少人工录入的过程,帮助用户从图像或扫描文档中提取文字,并将这些文字转换为计算机可读格式。这一功能在许多需要进一步处理数据的场景中,如身份验证、费用管理、自动报销、业务办理等都显得尤为实用。
表格结构识别是表格区域检测之后的任务,其目标是识别出表格的布局结构、层次结构等,将表格视觉信息转换成可重建表格的结构描述信息。
视觉信息提取(VIE)近年来受到了越来越多的关注。现有的方法通常首先将光学字符识别(OCR)结果组织成纯文本,然后利用标记级实体注释作为监督来训练序列标记模型。但是,它花费大量的注释成本,可能导致标签混淆,OCR错误也会显著影响最终性能。在本文中,作者提出了一个统一的弱监督学习框架,称为TCPN(标签、复制或预测网络),它引入了1)一种有效的编码器,可以同时对二维OCR结果中的语义和布局信息进行建模;2)仅利用关键信息序列作为监督的弱监督训练策略;和3)一个灵活和可转换的解码器,其中包含两种推理模式:一种(复制或预测模式)是通过复制输入或预测一个标记来输出不同类别的关键信息序列,另一种(标记模式)是直接标记输入序列。本方法在几个公共基准上显示了最新的性能,充分证明了其有效性。
表格识别的研究主要涉及两个方面,一方面是对单元格内的文本进行识别,这一步通常是在确定单元格区域后,利用较为稳定的光学字符识别方法(OCR)来实现,这一方面不是表格识别研究的重点,不在此展开;另一方面是基于整个表格内容进行的表格分类、单元格分类、以及表格信息抽取等任务,这是当前表格识别研究的热门领域之一。下文会对表格信息抽取进行展开讲述。
本文介绍了一种利用可变形transformer对文档图像进行表格检测的半监督方法。该方法通过将伪标签生成框架集成到一个简化的机制中,减轻了对大规模注释数据的需要,并简化了该过程。
表格检测识别一般分为三个子任务:表格区域检测、表格结构识别和表格内容识别。本章将围绕这三个表格识别子任务,从传统方法、深度学习方法等方面,综述该领域国内国外的发展历史和最新进展,并提供几个先进的模型方法。
与表格区域检测任务类似,在早期的表格结构识别方法中,研究者们通常会根据数据集特点,设计启发式算法或者使用机器学习方法来完成表格结构识别任务。
CRAFTS中提出了一个端到端可训练的单pipeline模型,它紧密地耦合了检测和识别模块,共享阶段的字符区域注意充分利用字符区域映射,帮助识别器纠正和更好地关注文本区域。同时,设计了识别损耗通过检测阶段传播,提高了检测器的字符定位能力。此外,在共享阶段的纠正模块使弯曲文本的精细定位,并避免了手工设计后处理的需要。 实验结果验证了CRAFTS在各种数据集上的最新性能。
基于分割的自然场景文本检测方法主要是借鉴传统的文本检测方法的思想,先通过卷积神经网络检测出基本的文本组件,然后通过一些后处理的方式将文本组件聚集成一个完整的文本实例。此类方法可以进一步划分为像素级别的方法(基于分割的方法)和文本片段级别的方法。
印章识别可自动提取出印章文本,从而实现计算机替代人工审核比对,解决合同管理工作中人工审核时间成本高、人力成本高的难题,降低财税及商务合同签订过程的业务风险,使商务连接更加高效和便捷。
OCR全称Optical Character Recognition,即光学字符识别,最早在1929年被德国科学家Tausheck提出,定义为将印刷体的字符从纸质文档中识别出来。现在的OCR,狭义上指对输入扫描文档图像进行分析处理,识别出图像中文本信息。而随着OCR技术的日益发展,人们已不再仅仅满足于文档或书本上的文本,开始将目标转移到现实世界场景中的文本,这被称为场景文本识别(Scene Text Recognition,STR)。