本文将从工程的角度,讲述推荐系统在模型训练与预估上面临的挑战,并介绍第四范式分布式机器学习框架 GDBT 是如何应对这些工程问题的。
Auto Byte
专注未来出行及智能汽车科技
微信扫一扫获取更多资讯
Science AI
关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展
微信扫一扫获取更多资讯
本文将从工程的角度,讲述推荐系统在模型训练与预估上面临的挑战,并介绍第四范式分布式机器学习框架 GDBT 是如何应对这些工程问题的。
本文将介绍在机器学习领域中数据隐私安全的相关工作,并介绍第四范式在差分隐私算法效果提升上所做的工作。
第四范式资深研究员罗远飞针对推荐系统中的高维稀疏数据,介绍了如何在指数级搜索空间中,高效地自动生成特征和选择算法;以及如何结合大规模分布式机器学习系统,在显著降低计算、存储和通信代价的情况下,从数据中快速筛选出有效的组合特征。
爱奇艺推荐系统介绍
为了满足用户广泛的兴趣,推荐列表需要能够极可能的覆盖用户的不同兴趣领域,即推荐结果要有多样性。多样性作为评估推荐系统性能的重要指标之一,该如何保障呢?