Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

路雪 张倩参与

自动捕捉高光时刻:谷歌展示Google Clips全新智能摄影技术

谷歌今天宣布,旗下 AI 智能相机 Google Clips 的技术再获升级。现在,它已能剪辑并自动捕捉特定时刻的图像——如人们的拥抱和亲吻,或跳跃和舞蹈动作。Google AI 博客对这款智能相机背后的机器学习技术进行了解读。

对我而言,摄影就是在几秒钟之内认识到一个事件的重要性,同时为这个事件找到恰当表达形式的一种精密组织形式。

——Henri Cartier-Bresson

在过去几年里,人工智能经历了一场类似寒武纪的爆发,在深度学习方法的帮助下,计算机视觉算法能够识别出一张优质照片中的许多元素,包括人、微笑、宠物、日落、著名地标等。但是,尽管最近取得了这些进展,自动摄影仍是一个颇具挑战性的问题。相机能自动捕捉不平凡的时刻吗?

今年 2 月,谷歌发布了 Google Clips,这是一款全新的免持相机,可以自动捕捉生活中的有趣瞬间。在 Google Clips 的设计过程中,谷歌主要遵循以下三个重要原则:

  • 谷歌希望所有计算都在设备上运行。除了延长电池寿命和减少延迟之外,设备端处理还意味着,除保存或共享视频之外,任何视频都不会离开设备,这是隐私控制的关键一环。

  • 谷歌希望该设备能够拍摄短视频,而不是单张照片。有动作的时刻可能更深刻,也能留下更真实的记忆。而且,拍摄一个引人注目时刻的视频往往比即时捕捉一个完美瞬间更容易。

  • 谷歌希望捕捉人和宠物的真实时刻,而不是将精力放在捕捉艺术图像这种更抽象、更主观的问题上。也就是说,谷歌并未试图教 Clips 思考构图、色彩平衡、灯光等问题,而是专注于如何选取包含人和动物进行有趣活动的时刻。

学会识别不平凡的时刻

如何训练算法来识别有趣的时刻?与大多数机器学习问题一样,研究者首先从数据集入手。他们在不同的场景中创建了一个由数千个视频组成的数据集,想象 Clips 在这些场景中得到应用。同时研究者还确保数据集涵盖广泛的种族、性别和年龄。之后,谷歌聘请了专业摄影师和视频编辑仔细查看视频,选出最佳的短视频片段。这些早期的处理为他们的算法提供了可以模仿的实例。然而,仅仅从内容处理者的主观选择来训练算法是有挑战性的,我们需要平滑的标签梯度来教会算法识别内容的质量(从「完美」到「糟糕」)。

为了解决这个问题,研究者采用了第二种数据收集方法,目标是在视频长度上创建连续的质量分数。研究者将每个视频分割成小段(类似于 Clips 捕捉到的内容),然后随机选择片段对,并要求人类评分者选择他们喜欢的片段。

研究者采用这种成对比较的方法,而不是让评分者直接给视频评分,因为选择一对中更好的一个要比给出一个数字容易得多。研究者发现评分者在成对比较中非常一致,而在直接评分时分歧大一些。给定任意给定视频足够多的成对比较片段,我们就能计算整个长度上的连续质量分数。在这个过程中,研究者从 1000 多个视频中收集了超过 5000 万对成对比较视频片段。这是一项非常耗费人力的工作。

训练评估视频片段质量的模型

基于该质量得分训练数据,研究者的下一步就是训练一个神经网络模型来评估设备捕捉到的任意照片的质量。谷歌研究者首先假设了解照片中的内容(即人、狗、树等)有助于确定「有趣性」(interestingness)。如果该假设正确,则我们可以学习一个使用识别到的照片内容的函数来预测其质量得分(得分基于人类的对比评估结果)。

为了确定训练数据中的内容标签,研究者使用了支持谷歌图像搜索和 Google Photos 的谷歌机器学习技术,该技术可以识别超过 27000 个描述对象、概念和动作的标签。研究者当然不需要所有标签,也不会在设备端对所有标签进行计算,因此专业摄影师选择了几百个他们认为与预测照片「有趣性」最相关的标签。研究者还将最相关的标签与评分者的质量得分结合起来。

有了这个标签子集之后,研究者需要设计一个紧凑高效的模型,在能量和发热严格受限的设备端预测任意给定图像的标签。这是一项挑战,因为计算机视觉背后的深度学习技术通常需要强大的 desktop GPU,在移动端设备上运行的算法远远落后于桌面端或云端的当前最优技术。为了训练设备端模型,谷歌研究者首先采用大量照片集合,然后再次使用谷歌基于服务器的强大识别模型来预测上述每个「有趣」标签的置信度。研究者训练了一个 MobileNet 图像内容模型(Image Content Model,ICM),用于模仿基于服务器的模型的预测。该紧凑模型能够识别照片中最有趣的元素,忽略不相关的内容。

最后一步是利用 ICM 预测的照片内容,预测输入照片的质量得分,使用 50M 成对比较视频片段作为训练数据。得分通过逐段线性回归模型进行计算,将 ICM 输出转换为帧质量得分。视频片段中的帧质量得分取平均即为 moment score。给定一组成对对比视频片段,该模型计算出的人类偏好的视频片段的 moment score 更高一些。该模型的训练目的是使其预测尽可能与人类的成对比较结果一致。

生成帧质量得分的训练过程图示。逐段线性回归模型将 ICM 嵌入映射至帧质量得分,视频片段中的所有帧质量得分取平均即是 moment score。人类偏好的视频片段的 moment score 应该更高。

该过程使得研究者训练出一个结合谷歌图像识别技术和人类评分者智慧的模型。(人类评分者智慧主要体现在指出有趣内容的 5000 万条意见。)

拍照控制器(Shot Control)

基于这一预测照片「有趣性」的强大模型,Google Clips 可以决定哪些时刻需要实时捕捉。其拍照控制器算法遵循以下三个主要原则:

  1. 尊重电量 & 发热:谷歌希望 Clips 的电池能够持续大约三小时,同时不想设备过热,因此该设备不能一直全力运行。Clips 大部分时间处于每秒拍摄一帧的省电模式。如果这一帧的质量超过 Clips 最近拍摄的阈值集,则它进入高功率模式,以 15 fps 进行拍摄。Clips 在遇到第一次质量高峰时保存该视频片段。

  2. 避免冗余:谷歌不希望 Clips 一次捕捉所有时刻,而忽视了其他内容。因此谷歌的算法将这些时刻聚合成视觉相似的组,限制每一簇中的视频片段的数量。

  3. 后见之明的好处:看到所有的视频片段后,再选择最佳的视频片段就比较简单了。因此视频片段捕捉到的时刻要比它展示给用户的多。当视频片段要迁移至手机时,Clips 设备会花一秒时间查看其拍摄成果,只把最好和最不冗余的内容迁移过去。

机器学习公平性

除了确保视频数据集展现人口多样性,研究者还构建了多个测试来评估该算法的公平性。研究者通过从不同性别、肤色中均匀采样,同时保持内容类型、时长和环境条件不变,来精心创建数据集。然后,研究者使用该数据集测试该算法在应用到其他群体时是否具备相似性能。为了帮助检测提升 moment 质量模型时可能发生的任何公平性回归,研究者向该自动系统添加了公平性测试。该软件的任意改变都会在该测试中运行,并获得通过。注意该方法无法确保公平性,因为研究者无法测试每一个可能的场景和结果。但是,研究者相信这些步骤是实现机器学习算法公平性的长期工作中的重要部分。

结论

多数机器学习算法都是为评估客观质量而设计的,如判断照片中是否有猫。在本文中,谷歌的目标是捕捉一个更难捉摸、更主观的质量——判断个人照片是否有趣。因此,谷歌将照片的客观、语义内容与主观人类偏好相结合,构建了 Google Clips 背后的人工智能。此外,Clips 被设计成与人协同,而不是自主工作;为了获得优质的结果,人类的取景意识依然重要,还要确保相机的方向是有趣的内容。谷歌对 Google Clips 的出色表现感到欣慰,期待继续改进算法来捕捉「完美」时刻! 

原文链接:https://ai.googleblog.com/2018/05/automatic-photography-with-google-clips.html

Google 新动向
Google 新动向

解读 Google 技术新动向

工程谷歌智能相机机器学习计算机视觉
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

线性回归技术

在现实世界中,存在着大量这样的情况:两个变量例如X和Y有一些依赖关系。由X可以部分地决定Y的值,但这种决定往往不很确切。常常用来说明这种依赖关系的最简单、直观的例子是体重与身高,用Y表示他的体重。众所周知,一般说来,当X大时,Y也倾向于大,但由X不能严格地决定Y。又如,城市生活用电量Y与气温X有很大的关系。在夏天气温很高或冬天气温很低时,由于室内空调、冰箱等家用电器的使用,可能用电就高,相反,在春秋季节气温不高也不低,用电量就可能少。但我们不能由气温X准确地决定用电量Y。类似的例子还很多,变量之间的这种关系称为“相关关系”,回归模型就是研究相关关系的一个有力工具。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

MobileNets技术

MobileNet是专用于移动和嵌入式视觉应用的卷积神经网络,是基于一个流线型的架构,它使用深度可分离的卷积来构建轻量级的深层神经网络。通过引入两个简单的全局超参数,MobileNet在延迟度和准确度之间有效地进行平衡。MobileNets在广泛的应用场景中有效,包括物体检测、细粒度分类、人脸属性和大规模地理定位。

推荐文章
暂无评论
暂无评论~