Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

意念操控电脑,如手掌般精准!MIT脑机接口新技术登Nature子刊

图片

编辑 | 2049

想象一下,仅凭思维就能自如地操控电脑鼠标,就像健全人使用手部一样精准和流畅。这听起来像科幻片中的场景,但在加州理工学院(MIT)的最新研究中,这样的未来正在成为现实。

研究人员开发出了一种名为「FENet」的突破性技术,让瘫痪患者能够更精准地用意念控制电脑设备。

该研究以「Enhanced control of a brain-computer interface by tetraplegic participants via neural-network-mediated feature extraction」为题,于 2024 年 12 月 6 日发布在《Nature Biomedical Engineering》。

图片

研究背景

脑机接口技术通过在大脑皮层植入电极阵列,让人类思维可以直接控制计算机,为截瘫患者重获活动能力带来希望。然而,当前的植入式脑机接口在精准度和可靠性方面还远未达到健全人手部操控的水平。

其核心挑战在于神经信号的提取和解码。这就像在嘈杂的音乐节现场要准确捕捉某个特定乐器的声音,如何从充满噪声的神经活动中识别出有效的控制信号。

随着时间推移,植入电极周围的组织变化会导致信号质量逐渐下降,而传统的信号处理方法如阈值检测(TCs)和小波变换(WTs)难以适应这种动态变化。这凸显了开发更智能、更稳健的特征提取方法的必要性。

技术创新

该团队提出的 FENet(Feature Extraction Network)框架通过深度学习方法实现了对这一技术瓶颈的突破。其核心创新在于构建了一个约束性端到端训练架构,通过以下机制实现了特征提取的优化:

图片

图 1:方法概述。(来源:论文)

统一参数映射

FENet 采用一维卷积神经网络架构,创新性地对所有电极采用相同的特征提取参数。这一设计基于神经元活动的生物物理特性——动作电位波形主要取决于电极尖端与神经元的相对位置,而非神经元在行为中的具体功能。这种约束不仅降低了参数数量,提高了模型的泛化能力,更重要的是使得提取的特征具有跨电极、跨脑区的一致性。

双阶段优化策略

系统采用创新的双阶段优化架构:第一阶段将宽带神经信号转换为神经特征,第二阶段建立特征到行为的解码映射。这种分离设计确保了特征提取过程独立于具体的行为解码任务,提高了方法的通用性和稳定性。

自适应特征学习

FENet 通过深度学习框架,能够自适应地从原始信号中学习最具信息量的特征模式,而不是依赖预设的特征提取规则。这种数据驱动的方法显著提升了对复杂神经信号模式的捕获能力。

图片

图 2:闭环训练和管道以及BCI 系统的结构和性能。(来源:论文)

实验验证

研究团队在三名截瘫患者身上进行了实验验证:54 岁的 JJ(C5-C6),32 岁的 EGS(C5-C6)和 62 岁的 NS(C3-C4)。JJ 提供了 54 次会话数据,时间跨度从 2019 至 2022 年;EGS 提供了 175 次会话数据,时间跨度从 2014 至 2018 年;而 NS 完成了 9 次会话的手指网格任务测试。

在闭环控制任务中,FENet 相比现有方法显著改善了多项指标:减少了瞬时角度误差,提高了路径效率,缩短了到达目标所需时间。

在8x8网格任务中,相比阈值检测法(t = -11.850, P < 0.0001)和小波变换法(t = -4.252, P < 0.0001),FENet 在成功率和信息传输率方面都取得显著提升。每次测试中,参与者都表示强烈偏好使用基于 FENet 的解码器。

研究还表明,FENet 展示了出色的泛化能力,可以在不同时期、不同脑区(如运动皮层和顶叶皮层)和不同受试者之间保持稳定性能。

虽然系统存在试验间的变异性,但这种变异性主要源于行为因素对单电极水平神经活动的影响,可以通过多电极记录和潜变量估计来缓解。这些发现为 FENet 在临床中的实际应用提供了重要支持。

图片

图 3:JJ 的闭环性能评估。(来源:论文原图 Figure 2)

总之,FENet 的突破不仅开创了脑机接口优化的新范式,更让「用思维控制设备」的愿景更近一步。这项将神经科学深度学习相结合的创新,证明了跨学科方法能带来显著突破。

论文链接:https://www.nature.com/articles/s41551-024-01297-1

产业深度学习卷积神经网络AI for Science
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

神经科学技术

神经科学,又称神经生物学,是专门研究神经系统的结构、功能、发育、演化、遗传学、生物化学、生理学、药理学及病理学的一门科学。对行为及学习的研究都是神经科学的分支。 对人脑研究是个跨领域的范畴,当中涉及分子层面、细胞层面、神经小组、大型神经系统,如视觉神经系统、脑干、脑皮层。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

信号处理技术

信号处理涉及到信号的分析、合成和修改。信号被宽泛地定义为传递“关于某种现象的行为或属性的信息(如声音、图像和生物测量)”的函数。例如,信号处理技术用于提高信号传输的保真度、存储效率和主观质量,并在测量信号中强调或检测感兴趣的组件。我们熟悉的语音、图像都可以看做是一种信号形式。因此,对于语音、图像的增强、降噪、识别等等操作本质上都是信号处理。

推荐文章
暂无评论
暂无评论~