Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

USENIX Sec'25 | LLM提示词注入攻击如何防?UC伯克利、Meta最新研究来了

图片
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

本文介绍对 LLM 提示词注入攻击(prompt injection)的通用防御框架。首篇论文已被安全顶会 USENIX Security 2025 接收,第一作者陈思哲是 UC Berkeley 计算机系博士生,Meta FAIR 访问研究员,研究兴趣为真实场景下的 AI 安全。他的导师是 David Wagner (UCB), 郭川 (Meta), Nicholas Carlini (Google)。

一作主页:https://sizhe-chen.github.io图片
项目报告 slides:https://drive.google.com/file/d/1baUbgFMILhPWBeGrm67XXy_H-jO7raRa/view?usp=sharing
图片
  • 论文地址:https://arxiv.org/pdf/2402.06363
  • 项目主页:https://sizhe-chen.github.io/StruQ-Website
  • 代码仓库:https://github.com/Sizhe-Chen/StruQ
图片
  • 论文地址:https://arxiv.org/pdf/2410.05451
  • 项目主页:https://sizhe-chen.github.io/SecAlign-Website
  • 代码仓库:https://github.com/facebookresearch/SecAlign

提示词注入攻击:背景

LLM 强大的语言能力,使其被广泛部署于 LLM 应用系统(LLM-integrated applications)中。此时,LLM 需要访问外部数据(如文件,网页,API 返回值)来完成任务。在这个交互场景下,有以下三方:

  • 指令(可信的):来自 LLM 应用系统开发者
  • 模型(可信的):来自开发者或 API 供应方
  • 数据(不可信的):来自外部或第三方
图片
系统对外部数据源的访问,提供了全新的攻击视角:攻击者可以在第三方数据中,注入额外的指令,以覆盖 LLM 应用的原指令。如下图所示,餐厅 A 的老板在点评网站 yelp 上,发布一条含有提示词注入攻击的评论,误导 LLM 忽视其原指令(推荐一些好餐厅),转而推荐风评不佳的餐厅 A。
图片
图片
提示词注入攻击,被 OWASP 安全社区列为对 LLM 应用系统的最大威胁 [1],对更广泛的 LLM 应用造成重大安全阻碍。部署的工业级 LLM 应用系统(Google Docs [2], Slack AI [3], ChatGPT [4]),经测试可以被提示词注入攻击攻破,造成私有内容的泄露。

提示词注入攻击:原因

第一个原因:LLM 输入中,没有分离指令和数据,二者被直接拼接为单个 LLM 输入。
图片
对此,我们提出一个安全前端(secure front-end),在组织 LLM 输入时,显式分离指令和数据。

第二个原因:LLM 训练中,模型被教导遵循输入中的任意指令。

对此,我们提出结构化指令微调(structured instruction tuning)全对齐(secure alignment),训练 LLM 识别安全前端组织的输入,从中生成高质量的输出,并对提示词注入攻击鲁棒。
图片
防御策略 1:安全前端

在 LLM 输入上,我们设计只能被系统使用的分隔符(delimiters),分离指令和数据。安全前端会留出一些 LLM special tokens(如下图中的 [MARK], [INST], ...),用于指令 / 数据分离,并删除数据部分可能含有的特殊分隔符,使其仅能被 LLM 应用系统(而非数据提供方 / 攻击者)所使用。
图片
防御策略 2:结构化指令微调

在 LLM 训练时,我们模拟提示词注入攻击,教导模型忽视任何在数据中的注入指令,仅遵循 LLM 应用系统的原指令(由安全前端分离并定义)。具体来说,我们从原指令微调数据集,生成一个新的 “结构化指令微调数据集”,其部分包含带提示词注入攻击的样本,如下图所示。在此数据集上,我们利用标准 SFT(supervised fine-tuning)算法微调模型。
图片
防御策略 3:安全对齐

在 LLM 训练时,除了指令微调,还有对齐这一步骤,我们同样可以在此做防御。安全对齐构建一个偏好数据集(preference dataset),对于每一个 SFT 数据集中的样本:

  • 采样另一个随机样本 s',用于模拟提示词注入攻击
  • 偏好数据集中,LLM 输入是被注入了 s' 指令的样本 s
  • 偏好数据集中,LLM 理想输出是对 s 指令的回复
  • 偏好数据集中,LLM 不良输出是对 s' 指令的回复

在此数据集上,我们利用标准偏好优化(direct preference optimization)算法微调模型。
图片
提示词注入攻击:防御结果

防御策略 1+2 被称为 StruQ (USENIX Sec'25),防御策略 1+3 被称为 SecAlign。

如下图所示,StruQ/SecAlign 模型保持和未防御模型相同的性能(general-purpose utility by AlpacaEval2 WinRate)。

对于无优化的提示词注入攻击,StruQ 模型实现了 < 2% 攻击成功率,SecAlign 实现 0% 攻击成功率(Max ASR Opt.-Free)。

对于基于优化的提示词注入攻击,StruQ 显著降低其成功率,SecAlign 又进一步将成功率降低 4 倍以上,到 15% 以下(Max ASR Opt.-Based)。
图片
提示词注入攻击:防御总结

我们提出提示词注入攻击成功的两个原因,并逐一对它们设计防御。

由于 LLM 输入中,没有分离指令和数据,我们提出安全前端(secure front-end),在组织 LLM 输入时,用只能被系统所用的分隔符,分离指令和数据。

由于 LLM 训练中,模型被教导遵循输入中的任意指令,我们提出结构化指令微调(structured instruction tuning)和安全对齐(secure alignment),训练模型只遵循 LLM 应用系统设计的指令。

以下是三个防御策略,在模型训练 pipeline 中的位置。
图片
[1] https://owasp.org/www-project-top-10-for-large-language-model-applications
[2] https://embracethered.com/blog/posts/2023/google-bard-data-exfiltration
[3] https://promptarmor.substack.com/p/data-exfiltration-from-slack-ai-via
[4] https://thehackernews.com/2024/09/chatgpt-macos-flaw-couldve-enabled-long.html
工程USENIX Security 2025
暂无评论
暂无评论~