Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

NeurIPS 2024 | 解锁大模型知识记忆编辑的新路径,浙大用「WISE」对抗幻觉

图片

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com


本篇工作已被 NeurIPS(2024 Conference on Neural Information Processing Systems)会议接收,文章第一作者为浙江大学软件学院硕士生王鹏,师从张宁豫副教授。

在当前人工智能的迅猛发展中,大模型的知识记忆能力成为了提升智能系统理解和推理能力的关键。然而,与人类记忆相比,机器记忆缺乏灵活性和可控性,难以在动态环境中实现有效的知识更新与编辑。人类的大脑拥有高度适应性的记忆机制,能够根据外部环境变化及时进行信息的筛选、修正与增强。这种能力不仅使得我们能够精准地获取信息,还可以根据任务需求高效地调用相关知识。

相比之下,现有的大模型主要依赖固定的参数和数据来存储知识,一旦训练完成,修改和更新特定知识的代价极大,常常因知识谬误导致模型输出不准确或引发「幻觉」现象。因此,如何对大模型的知识记忆进行精确控制和编辑,成为当前研究的前沿热点。

本文借鉴认知科学和人类记忆的机制,探讨了大模型终身知识编辑问题,提出了一种基于双重记忆机制的大模型知识编辑方法 WISE, 旨在持续更新大语言模型的世界知识和纠正其幻觉性输出。此工作结合参数化长期记忆和工作记忆,在保持语言模型通用能力的同时可成功对模型进行数千次连续编辑
图片
  • 论文标题:WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models

  • 论文链接: https://arxiv.org/abs/2405.14768
  • 代码链接: https://github.com/zjunlp/EasyEdit

1. 背景与挑战

随着大模型(LLMs)的广泛应用,持续更新其世界知识和纠正幻觉性输出成为一个关键问题。过去的方法在长期模型知识编辑中往往无法同时实现可靠性、泛化性和局部性,这被称为「不可实现三角」(如下图)。
图片
                                                                               图 1 可靠性、泛化性和局部性之间的度量三角

2. 理论基础

2.1 终生模型知识编辑定义

终生模型知识编辑问题专注于对 LLMs 进行连续的、大量的编辑操作,目的是使模型的输出能够与人类预期保持一致,同时保留模型先前的知识与能力 (如图 2 所示)。具体来说,就是通过一系列时间序列上的编辑操作,逐步改进模型对特定查询的处理能力,这些编辑操作由一个不断变化的编辑数据集图片来驱动 [3,16,17]。
图片
                                        图 2 终生模型编辑任务示意图

终生模型编辑的目标是实现以下三个关键特性:
  • 可靠性(Reliability):模型能够在顺序编辑后记住当前和之前的编辑操作。

  • 泛化能力(Generalization):模型不仅仅记住查询-目标对,而是能够理解并泛化到不同类型的查询

  • 局部性(Locality):模型编辑操作不会影响与编辑知识无关的预训练知识。

其过程可以描述为:给定一个已经在图片上预训练的模型图片, 当模型需要纠正错误或注入新知识时会使用一个随时间变化的编辑数据集图片来进行编辑操作。在第 T 个编辑步骤中,模型知识编辑器(Model Editor, ME)接收第 T 个编辑样例和 T-1 步的的模型图片,并产生修正后的 LLM 模型图片。遵循以下等式:
图片图片是当前编辑步骤的输入,图片是期望输出;同时保留对过去编辑步骤中输入图片的记忆,并维持对不相关数据图片的处理能力。

注意,使用终生模型知识编辑技术并非必须一直编辑大模型,如积累大量新数据后可通过全量微调继续更新大模型的知识。终生模型知识编辑技术适用于小数据持续知识更新和谬误修正

2.2 语言模型中的知识记忆

在人类认知中,工作记忆为生物大脑提供了暂时保存信息的能力,以便以适应不断变化的环境的方式执行对话、推理和数学等任务。相似地,过去的文献 [8, 9, 10] 表明语言模型的记忆可分为长期(情节性的)记忆和工作记忆(短期):工作记忆可能存储在神经元的持续激活(推理时的 Activation)中,长期记忆可能存储在模型参数(Weight)中。

我们发现更新的知识驻留在记忆中的位置会影响编辑性能,现有方法可以大致分为两类:编辑长期记忆和编辑工作记忆。长期记忆是通过直接编辑模型参数来更新通用的参数化知识,这种方法会与之前的预训练知识产生冲突,导致局部性较差 (例如 FT-EWC [1]、ROME [2]);而工作记忆则是在推理时通过检索替换神经网络的激活/表征,不修改模型参数。尽管工作记忆方法在可靠性和局部性上表现优异,但其检索到的表征难以实现泛化,导致编辑的知识无法有效推广(例如 GRACE [3]、SERAC [4])。这些揭示了长期记忆和工作记忆对于终身模型编辑都有缺点。

此外,尽管有一些针对 LLM 架构的特殊记忆设计,如 MemorryLLM [6] 和 Memoria [7],它们改变了模型架构(大部分 Train from scratch)且不能直接应用于不同的 LLMs。
图片
                                         图 3 当前模型编辑方法的比较

这启发我们提出一个关键科学问题:如何设计适配大模型的知识记忆更新机制,以打破终生知识编辑中的不可能三角

3.WISE 方法介绍
图片
人类大脑的左右半球在不同任务中的分工给了我们灵感,这启发我们设计了 WISE,一个具备双参数记忆机制的框架。WISE 通过主记忆存储预训练知识,并引入侧记忆来专门存储编辑后的知识。侧记忆可以被视为一种中期记忆,它结合了长时记忆的泛化能力和基于检索的工作记忆的可靠性与局部性。我们仅在侧记忆中进行编辑,并训练一个路由器来决定在处理查询时应使用哪种记忆。

为了实现连续编辑,WISE 还设计了一种知识分片机制,将不同的编辑集合存储在独立的、正交的子空间中,最后将这些编辑合并为统一的侧记忆。主记忆存储模型在预训练阶段学到的知识:

1. 侧记忆(Wv’)作为一个副本,记录模型在编辑后的更新信息。
图片
2. 知识分片:将侧记忆划分成不同的随机子空间来存储编辑信息。具体来说,对于第 i 个编辑碎片,我们为其生成一个随机梯度掩码 Mi。这些掩码确保了每次编辑都仅在侧记忆的特定子空间中进行,从而实现了编辑的局部化和正交化。
图片
3. 自适应 Gate:采用基于激活的门控策略来决定在给定查询时使用主记忆还是侧记忆。门控激活指示器的计算方式是比较侧记忆和主记忆的激活差异(如下列公式所示)。我们设计了基于边界的损失函数,确保编辑查询的激活指标比无关查询大,具体目标是:编辑查询的激活值应大于无关查询,且两者之间的差异超过设定的阈值 γ
图片
4. 知识合并:通过 Ties-Merge [5] 技术将各个子空间的知识合并为一致的表征,实现参数的高效利用。

4. 实验结果

实验结果表明,直接修改模型权重会覆盖预训练的知识,导致新旧知识冲突,破坏局部性,影响模型对非编辑领域的保留。

WISE 在多个任务(如问答、幻觉修正、分布外数据)上表现出色,尤其是在 LLaMA、GPT 等架构中,WISE 大幅超越现有编辑方法。通过评估可靠性、泛化性和局部性三项指标,WISE 在长期编辑中能够有效解决模型冲突问题,并展示了优异的稳定性和扩展性。
图片
5. 实验分析

处理长序列持续编辑的潜力
图片
WISE 在 3K 次编辑下表现出色,尤其是 WISE-Retrieve 通过高效的子空间组织和路由机制,能够在较少性能下降的情况下应对大量编辑。

路由激活可视化
图片
WISE 通过激活指标准确区分编辑查询与非相关查询,确保编辑的局部性,并成功将相关查询路由到侧记忆,避免干扰预训练知识。

在 LLM 中的引入位置
图片
应在 LLM 的中间到后期层引入侧记忆。这些层被认为能够更好地处理高级语言现象,并且通过残差连接保持了较低层次的语义信息,使得编辑操作能够更有效地影响模型的输出。

WISE 的额外开销
图片
在编辑次数 3K 时,仅增加了 0.64% 的参数量和 4% 的 GPU 显存需求,且推理时间开销较小,具有较高的计算效率。

6. 总结与展望

本文为长期模型知识编辑提供了一种新颖的解决思路,通过侧记忆设计和知识分片技术,在不牺牲模型性能的情况下,实现了知识的有效更新。未来的研究可以进一步优化路由策略,提升侧记忆的检索效率;探索更好的记忆架构,以应对更加复杂的编辑场景。

当前阶段,针对事实和实例记忆等类型的知识编辑,通常采用以下几种方法:外部记忆更新(如 RAG、Memory 等 [12][13])、局部参数更新(如 ROME [2]、AlphaEdit [11])或全局参数更新(如微调或对齐)。而对于更抽象的知识类型,如安全性、人格或自我认知等,还可使用运行时干预(Steering [12][13])或慢思考方法(如借助 o1 思想进行错误修正)

不断提升大模型的知识处理能力,进而实现通用人工智能(AGI),是学术界与工业界的共同目标。大模型知识编辑技术的突破,不仅能够促进大模型对新知识和新技能的快速、永久习得,还可以实现神经与符号知识之间的高效转换与处理。此外,当大模型出现致命错误或安全隐患时,基于知识编辑技术可以快速定位问题根源,并实现及时的干预和控制。这种技术对确保大模型的可信与安全至关重要。

此外,大模型的知识编辑技术不仅能有效优化模型的表现,还能促进对大模型知识机理的深入研究。通过对参数进行干预与分析,研究人员可以进一步解构并理解 「电子大脑」的运作原理。

参考文献
[1] Overcoming catastrophic forgetting in neural networks.
[2] Locating and Editing Factual Associations in GPT.
[3] Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors.
[4] Memory-Based Model Editing at Scale.
[5] TIES-Merging: Resolving Interference When Merging Models.
[6] MEMORYLLM: Towards Self-Updatable Large Language Models.
[7] Memoria: Resolving Fateful Forgetting Problem through Human-Inspired Memory Architecture.
[8] FROST: A Distributed Neurocomputational Model of Working Memory Maintenance.
[9] Large Language Models with Controllable Working Memory.
[10] Adaptive semiparametric language models
[11] AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
[12] Retrieval-augmented generation for large language models: A survey
[13] Towards LifeSpan Cognitive Systems
[14] Word Embeddings Are Steers for Language Models
[15] Steering Llama 2 via Contrastive Activation Addition
[16] Enhance Lifelong Model Editing with Continuous Data-Adapter Association
[17] WilKE: Wise-Layer Knowledge Editor for Lifelong Knowledge Editing
工程WISENeurIPS 2024
相关数据
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

查询技术

一般来说,查询是询问的一种形式。它在不同的学科里涵义有所不同。在信息检索领域,查询指的是数据库和信息系统对信息检索的精确要求

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

通用人工智能技术

通用人工智能(AGI)是具有一般人类智慧,可以执行人类能够执行的任何智力任务的机器智能。通用人工智能是一些人工智能研究的主要目标,也是科幻小说和未来研究中的共同话题。一些研究人员将通用人工智能称为强AI(strong AI)或者完全AI(full AI),或称机器具有执行通用智能行为(general intelligent action)的能力。与弱AI(weak AI)相比,强AI可以尝试执行全方位的人类认知能力。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
Infor机构

Infor是一家跨国企业软件公司,总部设在美国纽约市。Infor专注于通过云计算作为服务交付给组织的业务应用。最初专注于从财务系统和企业资源规划(ERP)到供应链和客户关系管理的软件, Infor在2010年开始专注于工业利基市场的软件,以及用户友好的软件设计。Infor通过Amazon Web Services和各种开源软件平台部署云应用。

www.infor.com
相关技术
推荐文章
暂无评论
暂无评论~