Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

英伟达开源最新大模型Nemotron 70B后,只有OpenAI o1一个对手了

英伟达不仅要做显卡领域的领先者,还要在大模型领域逐渐建立起自己的优势。

今天,英伟达又开源了一个性能超级强大的模型 —— Llama-3.1-Nemotron-70B-Instruct,它击败了 OpenAI 的 GPT-4o 等闭源模型和 Anthropic 的 Claude-3.5 sonnet 等开源模型。

从命名来看,显然 Llama-3.1-Nemotron-70B-Instruct 是基于 Llama-3.1-70B 打造而成。

图片

从下图中大模型榜单可以看到, Llama-3.1-Nemotron-70B-Instruct 的性能仅次于 OpenAI 最新 o1 大模型了。

图片

                                图源:https://x.com/itsPaulAi/status/1846565333240607148

目前,Llama-3.1-Nemotron-70B-Instruct 已经可以在线体验了。Starwberry 中有几个 r 这样的题目难不倒它。

图片

                           图源:https://x.com/mrsiipa/status/1846551610199273817

不过有时也一本正经地胡说八道,比如「2.11 和 2.9 哪个大」。

图片

体验地址:https://huggingface.co/chat/

不过英伟达也强调了,他们主要是提高模型在通用领域的性能,尚未针对数学等专业领域的表现进行调优,或许等待一段时间,模型就可以正确回答 2.11 和 2.9 哪个大了。

此外,英伟达还开源了 Nemotron 的训练数据集 HelpSteer2,包括如下:

  • 构建了 21362 个提示响应,使模型更符合人类偏好,也更有帮助、更符合事实、更连贯,并且可以根据复杂度和详细度进行定制;
  • 构建了 20324 个用于训练的提示响应,1038 个用于验证。

图片

                               数据集地址:https://huggingface.co/datasets/nvidia/HelpSteer2

除了 Llama-3.1-Nemotron-70B-Instruct 之外,英伟达还开源了另一个 Llama-3.1-Nemotron-70B-Reward 模型。

图片

模型合集地址:https://huggingface.co/collections/nvidia/llama-31-nemotron-70b-670e93cd366feea16abc13d8

模型介绍

Llama-3.1-Nemotron-70B-Instruct 是英伟达定制的大型语言模型,旨在提高 LLM 生成的响应的有用性。

Llama-3.1-Nemotron-70B-Instruct 在 Arena Hard 基准上得分为 85.0,在 AlpacaEval 2 LC 基准上得分为 57.6,在 GPT-4-Turbo MT-Bench 基准上得分为 8.98。

图片

截至 2024 年 10 月 1 日,Llama-3.1-Nemotron-70B-Instruct 在三个自动对齐基准中均排名第一,击败了 GPT-4o 和 Claude 3.5 Sonnet 等强大的前沿模型。

对于这一成绩,有网友表示,在 Arena Hard 基准上拿到 85.0 分,对于一个 70B 的模型来说,确实是件大事。

图片

还有网友讨论说,用相同的提示测试 GPT-4o 和英伟达模型,所有的答案都是英伟达的模型好,并且是好很多的那种。

图片

「加大题目难度,Llama-3.1-Nemotron-70B-Instruct 照样回答的很好。」

图片

在训练细节上,该模型在 Llama-3.1-70B-Instruct 基础上使用了 RLHF 技术(主要是 REINFORCE 算法),并采用了 Llama-3.1-Nemotron-70B-Reward 和 HelpSteer2 偏好提示作为初始训练策略。

此外,Llama-3.1-Nemotron-70B-Reward 是英伟达开发的一个大型语言模型,用于预测 LLM 生成的响应的质量。该模型使用 Llama-3.1-70B-Instruct Base 进行训练,并结合了 Bradley Terry 和 SteerLM 回归奖励模型方法。

Llama-3.1-Nemotron-70B-Reward 在 RewardBench 榜单的 Overall 排名中表现最佳,并在 Chat(聊天)、Safety(安全)和 Reasoning(推理)排名中也有出色表现。

图片

不过,想要部署该模型还需要一些先决条件,至少需要一台带有 4 个 40GB 或 2 个 80GB NVIDIA GPU 的机器,以及 150GB 的可用磁盘空间。想要尝试的小伙伴跟着官方给出的步骤进行部署即可。

参考链接:

https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct

https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward

产业Llama-3.1-Nemotron-70B-Instruct英伟达
相关数据
语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

推荐文章
暂无评论
暂无评论~