Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

中国科学院团队发布GeneCompass:解析基因调控密码,打造干湿融合新范式

图片

作者 | 中国科学院多学科交叉研究团队

编辑 | ScienceAI

近年来,大语言模型(LLMs)已在自然语言、计算机视觉等通用领域引发了新一轮技术革命,通过大规模语料和模型参数进行预训练,LLMs能够掌握语言的共性规律,能够对多种下游任务产生质的提升,已经形成了新的人工智能范式。

在生命科学领域,单细胞组学技术的突破产生了大量不同物种细胞的基因表达谱数据,形成了海量的生命「语料」。如果把基因表达值看作单词,组合在一起构成细胞「句子」,进而形成组织「段落」和器官「文章」,并将不同物种作为生命「语种」,利用LLMs相关技术有望构建系统精准破解基因密码的生命基础大模型,探索生命普遍存在的非线性基因调控机制,增进理解生命底层共性规律并创新各种重大疾病的诊疗手段。

对此,中国科学院多个院所(包括中国科学院动物研究所、中国科学院计算技术研究所、中国科学院计算机网络信息中心、中国科学院自动化研究所、中国科学院数学与系统科学研究院等)组成多学科交叉研究团队「指南针联盟」(Xcompass Consortium),在生命科学人工智能(AI for Life Science)研究方面取得了重要突破,于2024年10月在Cell Research上发表了《GeneCompass: Deciphering Universal Gene Regulatory Mechanisms with a Knowledge-Informed Cross-Species Foundation Model》的研究论文。

图片

论文链接:https://www.nature.com/articles/s41422-024-01034-y

论文介绍了世界首个知识与数据联合驱动的多物种生命基础大模型GeneCompass,同时处理了人类和小鼠两个物种的转录组数据,包含了超过1.26亿个单细胞并覆盖3.6万个基因,融合了启动子序列、基因共表达关系、基因家族标注和基因调控关系等四种先验知识,基础大模型参数量达到1.3亿,实现了对基因表达调控规律的全景式学习理解,同时支持细胞状态变化预测及多种生命过程的精准分析,展示了人工智能赋能生命科学研究的巨大潜力。

数据集:多物种单细胞数据集

目前,全世界范围内在单一物种上已获得的单细胞转录组数据规模为千万级别,研究团队从美国(NCBI)、欧洲(EMBL-EBI)和中国(CNCB)等公开数据中收集了不同物种的单细胞转录组数据,人类和小鼠的同源基因采用相同的Ensembl ID表示,非同源基因则采用各自的Ensembl ID。经过筛选、清洗、均一化等预处理流程,建立了已知最大规模、包含人类和小鼠的超过1.26亿细胞、覆盖两个物种3.6万个基因、几乎全部已知细胞类型的高质量数据集scCompass-126M。

图片

图示:研究人员收集了1.26亿人类和小鼠的单细胞转录组数据。

图片

图示:研究涉及人类和小鼠共3.6万个基因。

模型架构:知识嵌入的生命基础大模型GeneCompass

研究人员开发的GeneCompass模型参数量超过1.3亿,是国际上首个融入先验知识的预训练基础大模型,探索了知识与数据联合驱动的新范式。GeneCompass采用gene2vec、DNABert等工具将启动子序列、已知基因调控网络、基因家族信息和基因共表达关系四种生物学先验知识进行编码,在单细胞转录组的基因ID和表达值基础上加入人类注释信息编码,提高了对生物数据间复杂特征关联关系的理解。通过训练整合不同物种的数据信息及先验知识,GeneCompass显著提升了多种下游任务的性能,有望进一步提高传统生物学研究的效率和精准性,为尚无法突破的复杂生命科学难题带来新的切入点。

图片

图示:GeneCompass融入四种生物学先验知识

图片

图示:GeneCompass显著提升多种下游任务的性能。

GeneCompass采用基于Transformer的深度学习架构,扩展传统的掩码语言模型Masked Auto Encoder(MAE)方式进行预训练,根据单细胞转录组的上下文同时预测掩码的基因及其基因表达,捕获不同基因之间在不同细胞背景下的长程动态关联,通过多任务联合预训练形成更加细粒度的生命基础大模型。预训练完成后,GeneCompass进一步应用于多种下游任务,用于对单细胞转录组数据进行编码,支撑细胞类型标注、基因扰动预测、药物反应预测和基因调控关系预测等任务。

图片

图示:GeneCompass模型架构。

规模效应:多物种联合训练捕获生物进化保守规律

研究人员发现对大规模跨物种数据所获得的预训练模型对于单物种的子任务符合尺度定律(scaling law):即较大规模的多物种预训练数据量较单一物种数据量产生更优异的预训练表征,并进一步提高下游任务的性能。这一发现显示了物种间存在保守的基因调控规律,并且这些规律能够被预训练模型学习理解。这同时预示着随物种和数据的扩展,模型性能有望不断提升。

图片

图示:增加跨物种数据规模可提升模型性能。

研究结果:GeneCompass具有跨物种表征能力

研究人员对人类和小鼠同一细胞类型(心肌细胞)中同源基因和非同源基因的GeneCompass编码进行了相似性分析,可以看出相较于非同源基因,不同物种的同源基因具有更相似的编码,同源基因在人类和小鼠之间也具有相似的基因调控关系。

图片

图示:不同物种的同源基因具有更相似的GeneCompass编码。

图片

图示:人类和小鼠心肌细胞中GATA4基因具有相似的调控关系。

研究人员将GeneCompass编码后的基因嵌入与跨物种细胞类型标注的SOTA方法CAME进行结合,发现在多种细胞尤其是视网膜细胞中,GeneCompass能够显著提升跨物种细胞类型标注的精度。这些结果都展示了GeneCompass通过多物种联合预训练获得了生命底层的共性规律,增强了基因表征的能力。

图片

图示:跨物种细胞类型标注。

下游任务:基因扰动预测任务

研究人员利用GeneCompass编码的基因嵌入来预测由基因扰动所导致的全局基因表达变化,将其与现有工作GEARS结合起来,替换了原始从共表达知识图谱中学习到的基因嵌入。在前20个差异表达基因(DEG)的均方误差(MSE)平均降低了15.4%,使单基因扰动的偏差减少了5.9%,双基因扰动的偏差减少了12.5%。下图展示了双基因扰动TGFBR2+PRTG前20个基因表达变化, GeneCompass 的17/20 DEG预测结果比GEARS 的预测结果更准确。

图片

下游任务:药物反应预测、基因调控预测、药物剂量反应预测、基因表达谱预测

GeneCompass作为生命基础大模型,支持直接使用(zero-shot)和微调(fine-tune)两种模式。基于此,研究人员在药物反应预测、基因调控预测、药物剂量反应预测、基因表达谱预测等多种下游任务上进行了充分实验,验证了GeneCompass在不同任务中的适配性。实验结果表明,GeneCompass 在不同下游任务中均可达到SOTA水平,相比于传统生物学方法对生命底层规律具有更深的理解。

图片

下游任务:细胞命运预测和关键基因筛选

由于基因及其表达值在自监督预训练过程中同时被掩码和重建,GeneCompass能够捕捉复杂的调控机制,实现定量的模拟基因扰动。为了验证这种能力,研究人员构建iPSC模拟诱导实验,在人类成纤维细胞中模拟两个水平的OSKM 基因(Oct4、Sox2、Klf4 和 c-Myc)过表达。通过对比细胞状态嵌入的相似性可以看出,随着过表达水平的提高,成纤维细胞逐渐向iPSC细胞发育。这与现有结论是一致的,说明GeneCompass具有用于细胞命运预测的潜力。

图片

此外,GeneCompass可通过模拟基因扰动分析预测细胞命运转变中的关键调控因子,有望提高湿实验的效率并揭示新机制。研究人员进行了人类ESC细胞向性腺细胞分化的实验,利用GeneCompass在ESC细胞上开展广泛的单基因模拟过表达。通过比较初始、模拟和目标细胞嵌入之间的余弦相似度,研究人员确定了五个潜在基因,即 NR2F1、NR5A1、WT1、TCF21 和 GATA4。其中三个( WT1、NR5A1 和 NR2F1)已有研究成果验证对小鼠体内性腺发育至关重要。进而,研究人员在 ESC 中分别过表达NR5A1和 GATA4,免疫荧光结果表明,在人类 ESC 中单独过表达任一基因均可诱导性腺基因。

图片

图示:GeneCompass可用于模拟基因扰动以挖掘关键调控因子。

图片

图示:免疫荧光结果表明,在人类 ESC 中单独过表达任一基因均可诱导性腺基因。

综上所述,作为迄今为止最大规模的、具有知识嵌入的跨物种预训练生命基础大模型,GeneCompass可实现多个跨物种下游任务的迁移学习,并在细胞类型注释、定量基因扰动预测、药物敏感性分析等方面,相比已有方法取得更优性能。这充分展示了基于多物种无标注大数据预训练,再利用不同子任务数据进行模型微调的策略优势,有望成为实现基因-细胞特征相关联的各种生物问题分析预测的通用解决方案。

上述研究由「指南针联盟」团队完成,「指南针联盟」团队目前由北京干细胞与再生医学研究院/中国科学院动物研究所李鑫团队联合计算机网络信息中心,自动化研究所,计算技术研究所,数学与系统科学研究院等组成,联盟的目标是建立数智驱动的生命科学研究新范式,解析生命的本质规律。

加入我们:

中国科学院动物研究所/中国科学院干细胞与再生医学创新研究院干细胞微环境与细胞命运决定研究组(李鑫研究组)长期招聘博士后若干名,助理研究员1名,科研助理(行政岗)1名。实验室将为申请人提供浓厚的学术氛围、专注的科研环境和良好的合作平台,并有机会参与国内外著名实验室的合作项目,拓展学术视野,在学术界及工业界筑造良好的职业前景基础。

有意者请将相关材料以附件形式发送到E-mail:xinli@ioz.ac.cn,抄送zhang_jie0115@163.com。邮件及附件名称为:应聘岗位+个人姓名+最后学历专业。

联系人及联系电话:李老师,010-64807060

张老师,18920027879(同微信)

欢迎来电或者邮件咨询!

理论大模型计算机视觉人工智能
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

神经科学技术

神经科学,又称神经生物学,是专门研究神经系统的结构、功能、发育、演化、遗传学、生物化学、生理学、药理学及病理学的一门科学。对行为及学习的研究都是神经科学的分支。 对人脑研究是个跨领域的范畴,当中涉及分子层面、细胞层面、神经小组、大型神经系统,如视觉神经系统、脑干、脑皮层。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

知识图谱技术

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。

先验知识技术

先验(apriori ;也译作 先天)在拉丁文中指“来自先前的东西”,或稍稍引申指“在经验之前”。近代西方传统中,认为先验指无需经验或先于经验获得的知识。先验知识不依赖于经验,比如,数学式子2+2=4;恒真命题“所有的单身汉一定没有结婚”;以及来自纯粹理性的推断“本体论证明”

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

敏感性分析技术

敏感性分析是研究数学模型或系统的输出的不确定性(数值或其他)如何能够分配到输入中不同的不确定性来源

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

Infor机构

Infor是一家跨国企业软件公司,总部设在美国纽约市。Infor专注于通过云计算作为服务交付给组织的业务应用。最初专注于从财务系统和企业资源规划(ERP)到供应链和客户关系管理的软件, Infor在2010年开始专注于工业利基市场的软件,以及用户友好的软件设计。Infor通过Amazon Web Services和各种开源软件平台部署云应用。

www.infor.com
相关技术
推荐文章
暂无评论
暂无评论~