Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

自动化机器学习研究MLR-Copilot:利用大型语言模型进行研究加速

图片

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

该论文的第一作者及指导作者均来自德克萨斯大学达拉斯分校,第一作者为博士生 Ruochen Li,指导作者为其博士生导师 Xinya Du,专注于自然语言处理深度学习和大语言模型的研究。Xinya Du 的工作发表在包括 ACL、EMNLP 和 ICLR 在内的顶级自然语言处理机器学习会议上,其问题生成工作入选最具影响力的 ACL 论文。他被评为数据科学领域的闪亮新星,并获得了 2024 年的 NSF CAREER 奖项和 WAIC 云帆奖。

科学技术的快速发展过程中,机器学习研究作为创新的核心驱动力,面临着实验过程复杂、耗时且易出错,研究进展缓慢以及对专门知识需求高的挑战。近年来,LLM 在生成文本和代码方面展现出了强大的能力,为科学研究带来了前所未有的可能性。然而,如何系统化地利用这些模型来加速机器学习研究仍然是一个有待解决的问题。现有的研究往往只关注某一阶段,如生成研究假设或执行预定义的实验,未能涵盖整个研究过程,也未能充分解决当前研究中的具体问题。

为此,我们提出了 MLR-Copilot 自动化机器学习研究的研究平台 / 演示工具 (Demonstration),利用大型语言模型(LLM)作为研究人员的 “副驾驶”,分析研究论文、提取研究问题,以提出新的研究思路和实验计划,并自动化执行这些实验以获得结果。MLR-Copilot 包括三个阶段:研究思路生成、实验实现和实验执行。该框架在多项机器学习任务中有效促进了研究进展。

图片

  • 源代码链接:https://github.com/du-nlp-lab/MLR-Copilot

  • 论文链接:https://arxiv.org/pdf/2408.14033

  • Demo 链接:https://huggingface.co/spaces/du-lab/MLR-Copilot

方法介绍

MLR-Copilot 框架的提出旨在通过 LLM 代理自动生成和执行研究思路验证,实现科研过程的自动化。该框架从单篇科研论文出发,模仿科研人员的研究思路,收集任务定义并获取当前研究工作的最前沿进展,以提出新的研究思路并自动化验证。

图片

该框架首先从输入的研究论文中提取任务定义和研究空白,然后通过 IdeaAgent 生成研究思路(包括研究假设和实验计划),接着由 ExperimentAgent 实现并执行这些实验。在实验过程中,框架会持续观察和记录结果,必要时进行调整和优化,最终输出经过验证的研究成果。这种自动化流程显著提升了研究效率,确保了实验的可执行性和结果的可靠性。

图片

在 MLR-Copilot 框架中,整个科研流程分为三个阶段:

1. 研究思路生成:通过 IdeaAgent 从现有研究论文中生成假设和实验计划。系统通过分析和提取文献中的关键信息,提取任务定义并识别研究问题,并根据现有研究中的趋势和研究空白,生成新的研究假设和实验计划,形成初步的研究思路。

2. 实验实现:ExperimentAgent 将实验计划转化为可执行的实验,根据检索的原型代码,并在必要时从 Hugging Face 等平台获取模型和数据,生成并集成实验实现方案及搭建实验环境。

3. 实验执行:ExperimentAgent 管理实验的执行过程,在自动化的基础上结合人类反馈,逐步优化实验实现并迭代调试,并最终输出经过验证的研究成果,提高实验的成功率和研究结果的可靠性。

实验与讨论

为了评估 MLR-Copilot 框架的性能,论文作者设计了一系列实验,涵盖了五个不同领域的机器学习任务。这些任务包括了语义文本关联、情感分析、特征分类以及图像分类等,代表了机器学习研究中的广泛应用场景,其数据集包括:

  • SemRel:一个包含多语言语义文本关联任务的数据集,使用 Pearson 相关系数作为评估标准。

  • IMDB 数据集:用于情感分析的电影评论数据集。

  • Spaceship-Titanic 数据集:用于分类任务的数据集,预测乘客生存情况。

  • feedback (ELLIPSE) 数据集:用于基于机器学习的课程反馈预测任务。

  • Identify-Contrails 数据集:用于图像分类任务,识别卫星图像中的飞行轨迹。

为了更好的评估自动化机器学习研究的的性能,论文作者为 MLR-Copilot 框架量身定制了以下几个评估维度:

  • 研究思路的有效性:对研究思路中的假设和实验设计分别针对不同标准进行进行评估。此评估包含人工评估和 LLM 评分员自动评估,并与仅使用核心论文作为提示的基准线方法比较。

  • 实验实现与执行的成功率:通过多次实验运行的成功率以及对任务性能的平均提升率来评估实验阶段的效果。

图片

图片

实验结果表明:

  • 在研究思路生成阶段,MLR-Copilot 生成的假设在清晰度、有效性、严谨性、创新性和普遍性方面均优于基线模型。主观评测显示出 MLR-Copilot 生成的实验假设和设计更符合人类研究者的预期,较低的相似度也间接体现其创新性。

  • 在实验实现和执行阶段,MLR-Copilot 能够显著提升任务性能,并在多次试验中保持较高的成功率。

  • 通过案例研究,展示了 MLR-Copilot 在情感分析任务中的实际应用。系统通过对实验脚本的检查、执行、模型检索以及结果分析,帮助研究人员系统化地生成假设并执行实验。

图片

总结与展望

MLR-Copilot 框架展示了通过 LLM 自动化机器学习研究的潜力。它不仅能生成新的研究思路,还能够实现实验的自动化执行,并通过人机交互提高实验的成功率和研究成果的可靠性。未来的研究可以进一步扩展应用场景,并探索更多复杂的研究任务。

更多研究细节,可参考原论文。

参考文献:

[1] Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. Researchagent: Iterative research idea generation over scientific literature with large language models. arXiv preprint arXiv:2404.07738, 2024.

[2] John Smith, Jane Doe, and Wei Zhang. Mlagentbench2023: A framework for automating research idea generation and implementation using LLM agents. Journal of Computational Research, 45 (3):123–145, 2023.

[3] Vijay Viswanathan, Chenyang Zhao, Amanda Bertsch, Tongshuang Wu, and Graham Neubig. Prompt2model: Generating deployable models from natural language instructions. CoRR, abs/2308.12261, 2023.

[4] Semantic Scholar. URL https://www.semanticscholar.org/product/api.

[5] HuggingFace. URL https://huggingface.co/models, https://huggingface.co/datasets.

工程MLR-Copilot
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

自动化机器学习技术

机器学习最近在许多应用领域取得了长足的进步,这促成了对机器学习系统的不断增长的需求,并希望机器学习系统可以被新手快速地熟悉并使用。相应地,越来越多的商业企业推出产品旨在满足这种需求。这些服务需要解决的核心问题是:在给定数据集上使用哪种机器学习算法、是否以及如何预处理其特征以及如何设置所有超参数。这即是自动化学习(AutoML)企图解决的问题。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

推荐文章
暂无评论
暂无评论~