Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

TPAMI 2024 | 计算机视觉中基于图神经网络和图Transformers的方法和最新进展

图片

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com


本篇综述工作已被《IEEE 模式分析与机器智能汇刊》(IEEE TPAMI)接收,作者来自三个团队:香港大学俞益洲教授与博士生陈超奇、周洪宇,香港中文大学(深圳)韩晓光教授与博士生吴毓双、许牧天,上海科技大学杨思蓓教授与硕士生戴启元。

近年来,由于在图表示学习(graph representation learning)和非网格数据(non-grid data)上的性能优势,基于图神经网络(Graph Neural Networks,GNN)的方法被广泛应用于不同问题并且显著推动了相关领域的进步,包括但不限于数据挖掘(例如,社交网络分析、推荐系统开发)、计算机视觉(例如,目标检测、点云处理)和自然语言处理(例如,关系提取、序列学习)。考虑到图神经网络已经取得了丰硕的成果,一篇全面且详细的综述可以帮助相关研究人员掌握近年来计算机视觉中基于图神经网络的方法的进展,以及从现有论文中总结经验和产生新的想法。可惜的是,我们发现由于图神经网络计算机视觉中应用非常广泛,现有的综述文章往往在全面性或者时效性上存在不足,因此无法很好的帮助科研人员入门和熟悉相关领域的经典方法和最新进展。同时,如何合理地组织和呈现相关的方法和应用是一个不小的挑战。

图片

  • 论文标题:A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective

  • 论文地址:

    https://arxiv.org/abs/2209.13232(预印版)

    https://ieeexplore.ieee.org/document/10638815(IEEE 版)

尽管基于卷积神经网络(CNN)的方法在处理图像等规则网格上定义的输入数据方面表现出色,研究人员逐渐意识到,具有不规则拓扑的视觉信息对于表示学习至关重要,但尚未得到彻底研究。与具有内在连接和节点概念的自然图数据(如社交网络)相比,从规则网格数据构建图缺乏统一的原则且严重依赖于特定的领域知识。另一方面,某些视觉数据格式(例如点云和网格)并非在笛卡尔网格上定义的,并且涉及复杂的关系信息。因此,规则和不规则的视觉数据格式都将受益于拓扑结构和关系的探索,特别是对于具有挑战性的任务,例如理解复杂场景、从有限的经验中学习以及跨领域进行知识传递。

计算机视觉领域,目前许多与 GNN 相关的研究都有以下两个目标之一:(1) GNN 和 CNN 主干的混合,以及 (2) 用于表示学习的纯 GNN 架构。前者通常旨在提高基于 CNN 的特征的远程建模能力,并适用于以前使用纯 CNN 架构解决的视觉任务,例如图像分类语义分割。后者用作某些视觉数据格式(例如点云)的特征提取器。尽管取得了丰硕的进展,但仍然没有一篇综述能够系统、及时地回顾基于 GNN 的计算机视觉的发展情况。

在本文中,我们首先介绍了图神经网络的发展史和最新进展,包括最常用、最经典的图神经网络和图 Transformers。然后,我们以任务为导向对计算机视觉中基于图神经网络(包括图 Transformers)的方法和最新进展进行了全面且详细的调研。具体来说,我们根据输入数据的模态将图神经网络计算机视觉中的应用大致划分为五类:自然图像(二维)、视频、视觉 + 语言、三维数据(例如,点云)以及医学影像。在每个类别中,我们再根据视觉任务的不同对方法和应用进一步分类。这种以任务为导向的分类法使我们能够研究不同的基于图神经网络的方法是如何处理每个任务的,以及较为公平地比较这些方法在不同数据集上的性能,在内容上我们同时还涵盖了基于 Transformers 的图神经网络方法。对于不同的任务,我们系统性地总结了其统一的数学表达,阐明了我们组织这些文章的逻辑关系,突出了该领域的关键挑战,展示了图神经网络在应对这些挑战的独特优势,并讨论了它的局限和未来发展路线。

图片

                               图神经网络发展史

GNN 最初以循环 GNN 的形式发展,用于从有向无环图中提取节点表示。随着研究的发展,GNN 逐渐扩展到更多类型的图结构,如循环图和无向图。受到深度学习中 CNN 的启发,研究人员开发了将卷积概念推广到图域的方法,主要包括基于频域的方法和基于空域的方法。频域方法依赖于图的拉普拉斯谱来定义图卷积,而空域方法则通过聚合节点邻居的信息来实现图卷积。这些方法为处理复杂的图结构和不规则拓扑提供了有效的工具,极大地推动了 GNN 在多个领域,尤其是计算机视觉中的应用和发展。

图片

具体来说,我们详尽地调查了如下这些任务:

  • 建立在自然图像(二维)上的视觉任务包括 Image Classification (multi-label、few-shot、zero-shot、transfer learning),Object Detection,Semantic Segmentation,和 Scene Graph Generation。
  • 建立在视频上的视觉任务包括 Video Action Recognition,Temporal Action Localization,Multi-Object Tracking,Human Motion Prediction,和 Trajectory Prediction。
  • 视觉 + 语言方向的任务包括 Visual Question Answering,Visual Grounding,Image Captioning,Image-Text Matching,和 Vision-Language Navigation。
  • 建立在三维数据上的视觉任务包括 3D Representation Learning (Point Clouds、Meshes),3D Understanding (Point Cloud Segmentation、3D Object Detection、3D Visual Grounding),和 3D Generation (Point Cloud Completion、3D Data Denoising、3D Reconstruction)。
  • 建立在医学影像上的任务包括 Brain Activity Investigation,Disease Diagnosis (Brain Diseases、Chest Diseases),Anatomy Segmentation (Brain Surfaces、Vessels、etc)。

总结来说,尽管在感知领域取得了突破性的进展,如何赋予深度学习模型推理能力仍然是现代计算机视觉系统面临的巨大挑战。在这方面,图神经网络和图 Transformers 在处理 “关系” 任务方面表现出了显著的灵活性和优越性。为此,我们从面向任务的角度首次对计算机视觉中的图神经网络和图 Transformers 进行了全面的综述。各种经典和最新的算法根据输入数据的模态(如图像、视频和点云)分为五类。通过系统地整理每个任务的方法,我们希望本综述能够为未来的更多进展提供启示。通过讨论关键的创新、局限性和潜在的研究方向,我们希望读者能够获得新的见解,并朝着类似人类的视觉理解迈进一步。
产业TPAMI 2024图神经网络
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

关系提取技术

关系抽取任务需要检测和分类一组工件中的语义关系提及,通常来自文本或XML文档。该任务与信息提取(IE)的任务非常相似,但是IE另外需要去除重复关系(消歧),并且通常指的是提取许多不同的关系。

有向无环图技术

在图论中,如果一个有向图从任意顶点出发无法经过若干条边回到该点,则这个图是一个有向无环图(DAG图)。 因为有向图中一个点经过两种路线到达另一个点未必形成环,因此有向无环图未必能转化成树,但任何有向树均为有向无环图。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

推荐系统技术

推荐系统(RS)主要是指应用协同智能(collaborative intelligence)做推荐的技术。推荐系统的两大主流类型是基于内容的推荐系统和协同过滤(Collaborative Filtering)。另外还有基于知识的推荐系统(包括基于本体和基于案例的推荐系统)是一类特殊的推荐系统,这类系统更加注重知识表征和推理。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

数据挖掘技术

数据挖掘(英语:data mining)是一个跨学科的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的数据集中发现模式的计算过程。 数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

图神经网络技术

图网络即可以在社交网络或其它基于图形数据上运行的一般深度学习架构,它是一种基于图结构的广义神经网络。图网络一般是将底层图形作为计算图,并通过在整张图上传递、转换和聚合节点特征信息,从而学习神经网络基元以生成单节点嵌入向量。生成的节点嵌入向量可作为任何可微预测层的输入,并用于节点分类或预测节点之间的连接,完整的模型可以通过端到端的方式训练。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

语义分割技术

语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类。图像语义分割是AI领域中一个重要的分支,是机器视觉技术中关于图像理解的重要一环。

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
目标检测技术

一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。近些年兴起的深度学习技术是一种可从数据中直接学习特征表示的强大方法,并已经为一般目标检测领域带来了显著的突破性进展。

推荐文章
暂无评论
暂无评论~