Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

谷歌开源最强端侧小模型:2B参数越级跑赢GPT-3.5-Turbo,苹果15Pro运行飞快

谷歌也来卷「小」模型了,一出手就是王炸,胜过了比自己参数多得多的GPT-3.5、Mixtral竞品模型。

今年 6 月底,谷歌开源了 9B、27B 版 Gemma 2 模型系列,并且自亮相以来,27B 版本迅速成为了大模型竞技场 LMSYS Chatbot Arena 中排名最高的开放模型之一,在真实对话任务中比其两倍规模以上的模型表现还要好。

图片

如今,仅仅过去了一个多月,谷歌在追求负责任 AI 的基础上,更加地考虑该系列模型的安全性和可访问性,并有了一系列新成果。

图片

此次,Gemma 2 不仅有了更轻量级「Gemma 2 2B」版本,还构建一个安全内容分类器模型「ShieldGemma」和一个模型可解释性工具「Gemma Scope」。具体如下:

  • Gemma 2 2B 具有内置安全改进功能,实现了性能与效率的强大平衡;

  • ShieldGemma 基于 Gemma 2 构建,用于过滤 AI 模型的输入和输出,确保用户安全;

  • Gemma Scope 提供对模型内部工作原理的无与伦比的洞察力。

其中,Gemma 2 2B 无疑是「最耀眼的仔」,它在大模型竞技场 LMSYS Chatbot Arena 中的结果令人眼前一亮:仅凭 20 亿参数就跑出了 1130 分,这一数值要高于 GPT-3.5-Turbo(0613)和 Mixtral-8x7b。

这也意味着,Gemma 2 2B 将成为端侧模型的最佳选择。

图片
图片

苹果机器学习研究(MLR)团队研究科学家 Awni Hannun 展示了 Gemma 2 2B 跑在 iPhone 15 pro 上的情况,使用了 4bit 量化版本,结果显示速度是相当快。

图片

                             视频来源:https://x.com/awnihannun/status/1818709510485389563

此外,对于前段时间很多大模型都翻了车的「9.9 和 9.11 谁大」的问题,Gemma 2 2B 也能轻松拿捏。

图片
图片

                            图源:https://x.com/tuturetom/status/1818823253634564134

与此同时,从谷歌 Gemma 2 2B 的强大性能也可以看到一种趋势,即「小」模型逐渐拥有了与更大尺寸模型匹敌的底气和效能优势。

这种趋势也引起了一些业内人士的关注,比如知名人工智能科学家、Lepton AI 创始人贾扬清提出了一种观点:大语言模型(LLM)的模型大小是否正在走 CNN 的老路呢?

在 ImageNet 时代,我们看到参数大小快速增长,然后我们转向了更小、更高效的模型。这是在 LLM 时代之前,我们中的许多人可能已经忘记了。

  • 大型模型的曙光:我们以 AlexNet(2012)作为基线开始,然后经历了大约 3 年的模型大小增长。VGGNet(2014)在性能和尺寸方面都可称为强大的模型。

  • 缩小模型:GoogLeNet(2015)将模型大小从 GB 级缩小到 MB 级,缩小了 100 倍,同时保持了良好的性能。类似工作如 SqueezeNet(2015)和其他工作也遵循类似的趋势。

  • 合理的平衡:后来的工作如 ResNet(2015)、ResNeXT(2016)等,都保持了适中的模型大小。请注意,我们实际上很乐意使用更多的算力,但参数高效同样重要。

  • 设备端学习?MobileNet(2017)是谷歌的一项特别有趣的工作,占用空间很小,但性能却非常出色。上周,我的一个朋友告诉我「哇,我们仍然在使用 MobileNet,因为它在设备端具有出色的特征嵌入通用性」。是的,嵌入式嵌入是实实在在很好用。

最后,贾扬清发出灵魂一问,「LLM 会遵循同样的趋势吗?」

图片

                                      图像出自 Ghimire 等人论文《A Survey on Efficient Convolutional Neural Networks and Hardware Acceleration》。

Gemma 2 2B 越级超越 GPT-3.5 Turbo

Gemma 2 家族新增 Gemma 2 2B 模型,备受大家期待。谷歌使用先进的 TPU v5e 硬件在庞大的 2 万亿个 token 上训练而成。

这个轻量级模型是从更大的模型中蒸馏而来,产生了非常好的结果。由于其占用空间小,特别适合设备应用程序,可能会对移动 AI 和边缘计算产生重大影响。

事实上,谷歌的 Gemma 2 2B 模型在 Chatbot Arena Elo Score 排名中胜过大型 AI 聊天机器人,展示了小型、更高效的语言模型的潜力。下图表显示了 Gemma 2 2B 与 GPT-3.5 和 Llama 2 等知名模型相比的卓越性能,挑战了「模型越大越好」的观念。

图片

Gemma 2 2B 提供了:

  • 性能卓越:在同等规模下提供同类最佳性能,超越同类其他开源模型;

  • 部署灵活且经济高效:可在各种硬件上高效运行,从边缘设备和笔记本电脑到使用云部署如 Vertex AI 和 Google Kubernetes Engine (GKE) 。为了进一步提高速度,该模型使用了 NVIDIA TensorRT-LLM 库进行优化,并可作为 NVIDIA NIM 使用。此外,Gemma 2 2B 可与 Keras、JAX、Hugging Face、NVIDIA NeMo、Ollama、Gemma.cpp 以及即将推出的 MediaPipe 无缝集成,以简化开发;

  • 开源且易于访问:可用于研究和商业应用,由于它足够小,甚至可以在 Google Colab 的 T4 GPU 免费层上运行,使实验和开发比以往更加简单。

从今天开始,用户可以从 Kaggle、Hugging Face、Vertex AI Model Garden 下载模型权重。用户还可以在 Google AI Studio 中试用其功能。

下载权重地址:https://huggingface.co/collections/google/gemma-2-2b-release-66a20f3796a2ff2a7c76f98f

Gemma 2 2B 的出现挑战了人工智能开发领域的主流观点,即模型越大,性能自然就越好。Gemma 2 2B 的成功表明,复杂的训练技术、高效的架构和高质量的数据集可以弥补原始参数数量的不足。这一突破可能对该领域产生深远的影响,有可能将焦点从争夺越来越大的模型转移到改进更小、更高效的模型。

Gemma 2 2B 的开发也凸显了模型压缩和蒸馏技术日益增长的重要性。通过有效地将较大模型中的知识提炼成较小的模型,研究人员可以在不牺牲性能的情况下创建更易于访问的 AI 工具。这种方法不仅降低了计算要求,还解决了训练和运行大型 AI 模型对环境影响的担忧。

ShieldGemma:最先进的安全分类器

图片

技术报告:https://storage.googleapis.com/deepmind-media/gemma/shieldgemma-report.pdf

ShieldGemma 是一套先进的安全分类器,旨在检测和缓解 AI 模型输入和输出中的有害内容,帮助开发者负责任地部署模型。

ShieldGemma 专门针对四个关键危害领域进行设计:

  • 仇恨言论

  • 骚扰

  • 色情内容

  • 危险内容

图片

这些开放分类器是对负责任 AI 工具包(Responsible AI Toolkit)中现有安全分类器套件的补充。

借助 ShieldGemma,用户可以创建更加安全、更好的 AI 应用

SOTA 性能:作为安全分类器,ShieldGemma 已经达到行业领先水平;

规模不同:ShieldGemma 提供各种型号以满足不同的需求。2B 模型非常适合在线分类任务,而 9B 和 27B 版本则为不太关心延迟的离线应用程序提供了更高的性能。

如下表所示,ShieldGemma (SG) 模型(2B、9B 和 27B)的表现均优于所有基线模型,包括 GPT-4。

图片

Gemma Scope:让模型更加透明

Gemma Scope 旨在帮助 AI 研究界探索如何构建更易于理解、更可靠的 AI 系统。其为研究人员和开发人员提供了前所未有的透明度,让他们能够了解 Gemma 2 模型的决策过程。Gemma Scope 就像一台强大的显微镜,它使用稀疏自编码器 (SAE) 放大模型的内部工作原理,使其更易于解释。

图片

Gemma Scope 技术报告:https://storage.googleapis.com/gemma-scope/gemma-scope-report.pdf

SAE 可以帮助用户解析 Gemma 2 处理的那些复杂信息,将其扩展为更易于分析和理解的形式,因而研究人员可以获得有关 Gemma 2 如何识别模式、处理信息并最终做出预测的宝贵见解。

以下是 Gemma Scope 具有开创性的原因:

  • 开放的 SAE:超过 400 个免费 SAE,涵盖 Gemma 2 2B 和 9B 的所有层;

  • 交互式演示:无需在 Neuronpedia 上编写代码即可探索 SAE 功能并分析模型行为;

  • 易于使用的存储库:提供了 SAE 和 Gemma 2 交互的代码和示例。

参考链接:

https://developers.googleblog.com/en/smaller-safer-more-transparent-advancing-responsible-ai-with-gemma/

产业谷歌Gemma 2
相关数据
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

VGG技术

2014年,牛津大学提出了另一种深度卷积网络VGG-Net,它相比于AlexNet有更小的卷积核和更深的层级。AlexNet前面几层用了11×11和5×5的卷积核以在图像上获取更大的感受野,而VGG采用更小的卷积核与更深的网络提升参数效率。VGG-Net 的泛化性能较好,常用于图像特征的抽取目标检测候选框生成等。VGG最大的问题就在于参数数量,VGG-19基本上是参数量最多的卷积网络架构。VGG-Net的参数主要出现在后面两个全连接层,每一层都有4096个神经元,可想而至这之间的参数会有多么庞大。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

边缘计算技术

边缘运算(英语:Edge computing),又译为边缘计算,是一种分散式运算的架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。

GoogLeNet技术

同样在2014年,谷歌提出了 GoogLeNet(或Inception-v1)。该网络共有22层,且包含了非常高效的Inception模块,它同样没有如同VGG-Net那样大量使用全连接网络,因此参数量非常小。GoogLeNet最大的特点就是使用了Inception模块,它的目的是设计一种具有优良局部拓扑结构的网络,即对输入图像并行地执行多个卷积运算或池化操作,并将所有输出结果拼接为一个非常深的特征图。

聊天机器人技术

聊天机器人是经由对话或文字进行交谈的计算机程序。能够模拟人类对话,通过图灵测试。 聊天机器人可用于实用的目的,如客户服务或资讯获取。有些聊天机器人会搭载自然语言处理系统,但大多简单的系统只会撷取输入的关键字,再从数据库中找寻最合适的应答句。

稀疏自编码器技术

引入了稀疏性限制的自编码器

语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

量化技术

深度学习中的量化是指,用低位宽数字的神经网络近似使用了浮点数的神经网络的过程。

推荐文章
暂无评论
暂无评论~