Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

第二届「简约与学习会议 (CPAL)」将在斯坦福大学举办,征稿进行中

CPAL会议简介

CPAL是一年一度的研究型学术会议,专注于解决机器学习信号处理、优化等领域中普遍存在的简约 (Parsimonious)、低维结构 (Low Dimensional Structures) 问题。 创办这个会议的出发点,即将其设计为一个普遍的科学论坛,使机器学习、应用数学、信号处理、优化、智能系统以及所有相关的科学和工程领域的研究人员能够聚集在一起,分享见解,并最终努力达成一个共同的现代理论和计算框架,从简约学习的角度理解智能和科学。

首届CPAL于2024年1月在香港大学成功举办,会议吸引了数百名世界各地的参会者,包含四天丰富多彩的议程的活动。首届大会邀请了九位特邀讲者,十六位新星奖得主,和近百接受论文(双轨道)的口头或海报报道。

首届大会详情可见:https://2024.cpal.cc/

CPAL 2025

第二届CPAL将于2025年3月底在斯坦福大学举办,由斯坦福大学数据科学院承办。

会议官网: https://cpal.cc/

大会愿景:

"Everything should be made as simple as possible, but not any simpler." – Albert Einstein

智能或科学的存在,乃至其产生的最基本原因之一是,世界并非完全随机,而是高度结构化和可预测的。因此,智能或科学的一个基本目的和功能是从大量感知到的世界数据中学习简约的模型(或规律),来理解这种可预测的结构。

在过去的十年中,机器学习和大规模计算的出现,极大地改变了我们在工程和科学中处理、解释和预测数据的方式。基于特定信号和测量结构的参数模型(比如稀疏和低秩模型)来设计算法的「传统」方法,及其相关的优化工具包,现在已经通过数据驱动的学习技术得到了极大地丰富,其中,大规模网络被预训练,然后适应各种具体任务。然而,无论是现代数据驱动还是经典模型基础的范例的成功,都关键地依赖于正确识别实际数据中存在的低维结构,我们认为学习和压缩数据处理算法的角色(无论是显式还是隐式,如深度网络)是密不可分的。

最近,基础模型的出现使一些人提出,简约性和压缩本身是智能系统学习目标的一个基本部分,这与神经科学对压缩作为大脑表征世界感知数据的指导原则的观点相连。总的来说,这些研究线路到目前为止相对独立地发展,尽管他们的基础和目的都在于简约性和学习。我们组织这次会议的目的是统一解决和进一步深化研究这个问题:我们希冀这次会议成为一个通用的科学论坛,让机器学习、应用数学、信号处理、优化、智能系统以及所有相关科学和工程领域的研究人员可以在这里紧密交流,分享见解,最终从简洁学习的视角向理解智能和科学的现代理论和计算框架共同迈进。

关键日期:

  • 2024年11月25日:大会论文投稿截止
  • 2024年12月6日:教程 (Tutorial) 提案截止
  • 2024年12月15日:“学术新星”申请截止
  • 2025年1月3日-6日:论文Rebuttal
  • 2025年1月4日:教程 (Tutorial) 结果发布
  • 2025年1月5日:"近期焦点" 文章投稿截止
  • 2025年1月30日:最终论文评审结果发布
  • 2025年3月24-27日:会议在斯坦福大学举行

所有截止日期均为 UTC-12:00 时区(地球上任何地方)的晚上 11:59。

学术新星 "Rising Star" 鼓励计划

为鼓励和支持学术界的新生力量,CPAL特别设立了“Rising Star”计划,旨在发掘和表彰在简约与学习领域表现突出的年轻研究人员。我们欢迎博士生、博士后和青年学者提交他们的研究工作。被选中的“Rising Star”将有机会在大会上展示他们的成果,并获得与领域内顶尖学者交流的宝贵机会。我们希望通过这一计划,能够激发更多新生代研究人员的创新潜力,推动简约与学习领域的发展。

论文提交和学科领域

CPAL 会议包括两个轨道:大会论文集 (Proceedings Track) 和 "近期焦点" 轨道 (Recent Spotlight Track),详情请参考官网: https://cpal.cc/tracks/

  • 「大会论文集 」轨道 (存档):提交和评审阶段是双盲的。会议使用 OpenReview 托管论文并允许公开讨论。完整的论文可以有最多九页,参考文献和附录页数不受限制。
  • 「最新亮点」轨道(非存档):提交会议风格的论文(最多九页,附加页用于参考文献),描述工作内容。请在 OpenReview 上上传一个简短(250 字)的摘要。评审将以单盲方式进行(作者不需要匿名化提交)。

评审机制中的重要创新:每篇论文都有一个 Program Chair 负责引导。对于每篇被接受的论文,其负责的 Area Chair 和 Program Chair 的姓名将公开发布在其 OpenReview 页面上,以确保责任。对于每篇被拒绝的论文(不包括撤稿),只会显示其负责的 Program Chair 的姓名。审稿人将获得评级并动态选择。

CPAL 欢迎以下兴趣领域相关的投稿,包括但不限于:

  • 理论与基础:稀疏编码、结构化稀疏性、子空间学习、低维流形及一般低维结构的理论。字典学习和低维结构的表征学习,以及它们与深度学习理论的联系。等变性和不变性建模。理论神经科学和认知科学的基础,以及生物启发的计算机制。
  • 优化与算法:学习紧凑和结构化表征的优化、鲁棒性和泛化方法。可解释和高效的深度架构(如基于展开优化的架构)。数据高效和计算高效的训练与推理方法。自适应和鲁棒的学习和推理算法。分布式、网络化或联邦学习在大规模环境中的应用。其他非线性降维和表征学习方法。
  • 数据、系统与应用:特定领域的数据集、基准和评估指标。从数据中学习简约和结构化的表征。受益于简约先验的逆问题。为简约学习算法设计的硬件和系统协同设计。在智能系统中,集成感知-行动循环的简约学习。在科学、工程、医学和社会科学中的应用。

CPAL 2025 会议团队

大会主席 (General Chairs):

Emmanuel Candès (斯坦福大学)

  • 马毅 (香港大学 & 加州大学伯克利分校)

会议程序主席 (Program Chairs):

  • 陈贝迪 (卡耐基梅隆大学)
  • Mert Pilanci (斯坦福大学)
  • Jeremias Sulam(约翰霍普金斯大学)
  • 王宇翔(加州大学圣迭戈分校)

会议顾问 (Senior Advisors to Program Chairs):

  • 汪张扬 (德州大学奥斯丁分校)
  • 曲庆 (密歇根大学)

本地主席 (Local Chairs):

  • 陈羽北 (加州大学戴维斯分校)
  • Sara Fridovich-Keil(斯坦福大学/佐治亚理工)
  • 刘晟(斯坦福大学)

出版主席(Publication Chairs)

  • 苏炜杰(宾夕法尼亚大学)
  • 朱志辉(俄亥俄州立大学)

行业联络主席(Industry Liaison Chairs)

  • Babak Ehteshami Bejnordi(高通公司)

Utku Evci(谷歌DeepMind

  • Souvik Kundu(英特尔实验室)

专题讨论主席(Panel Chairs)

  • Saiprasad Ravishankar(密歇根州立大学)

教程主席(Tutorial Chairs)

  • 尤翀(谷歌研究院)

宣传主席 (Publicity Chairs)

  • 雷琦(纽约大学)
  • 刘世伟(牛津大学)
  • William T. Redman(加州大学圣巴巴拉分校)

学术新星奖主席(Rising Stars Award Chairs)

  • 申荔月(密歇根大学)

网站主席(Web Chairs)

  • Sam Buchanan(芝加哥大学丰田技术研究所)

我们诚挚邀请所有相关领域的研究人员踊跃投稿,分享您的研究成果,推动简约与学习领域的发展。


产业
相关数据
英特尔机构

英特尔(NASDAQ: INTC)是全球半导体行业的引领者,以计算和通信技术奠定全球创新基石,塑造以数据为中心的未来。我们通过精尖制造的专长,帮助保护、驱动和连接数十亿设备以及智能互联世界的基础设施 —— 从云、网络到边缘设备以及它们之间的一切,并帮助解决世界上最艰巨的问题和挑战。

http://www.intel.cn/
相关技术
DeepMind机构

DeepMind是一家英国的人工智能公司。公司创建于2010年,最初名称是DeepMind科技(DeepMind Technologies Limited),在2014年被谷歌收购。在2010年由杰米斯·哈萨比斯,谢恩·列格和穆斯塔法·苏莱曼成立创业公司。继AlphaGo之后,Google DeepMind首席执行官杰米斯·哈萨比斯表示将研究用人工智能与人类玩其他游戏,例如即时战略游戏《星际争霸II》(StarCraft II)。深度AI如果能直接使用在其他各种不同领域,除了未来能玩不同的游戏外,例如自动驾驶、投资顾问、音乐评论、甚至司法判决等等目前需要人脑才能处理的工作,基本上也可以直接使用相同的神经网上去学而习得与人类相同的思考力。

https://deepmind.com/
马毅人物

加州大学伯克利分校电气工程与计算机科学系教授,BAIR成员。研究兴趣:计算机视觉、高维数据的低维模型、可扩展优化和机器学习、智能机器。近期研究低维模型和深度网络之间的关系、高维数据的稀疏表征和低秩近似、高维数据的聚类和分类、3D图像重建。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

神经科学技术

神经科学,又称神经生物学,是专门研究神经系统的结构、功能、发育、演化、遗传学、生物化学、生理学、药理学及病理学的一门科学。对行为及学习的研究都是神经科学的分支。 对人脑研究是个跨领域的范畴,当中涉及分子层面、细胞层面、神经小组、大型神经系统,如视觉神经系统、脑干、脑皮层。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

数据科学技术

数据科学,又称资料科学,是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

表征学习技术

在机器学习领域,表征学习(或特征学习)是一种将原始数据转换成为能够被机器学习有效开发的一种技术的集合。在特征学习算法出现之前,机器学习研究人员需要利用手动特征工程(manual feature learning)等技术从原始数据的领域知识(domain knowledge)建立特征,然后再部署相关的机器学习算法。虽然手动特征工程对于应用机器学习很有效,但它同时也是很困难、很昂贵、很耗时、并依赖于强大专业知识。特征学习弥补了这一点,它使得机器不仅能学习到数据的特征,并能利用这些特征来完成一个具体的任务。

信号处理技术

信号处理涉及到信号的分析、合成和修改。信号被宽泛地定义为传递“关于某种现象的行为或属性的信息(如声音、图像和生物测量)”的函数。例如,信号处理技术用于提高信号传输的保真度、存储效率和主观质量,并在测量信号中强调或检测感兴趣的组件。我们熟悉的语音、图像都可以看做是一种信号形式。因此,对于语音、图像的增强、降噪、识别等等操作本质上都是信号处理。

参数模型技术

在统计学中,参数模型是可以使用有限数量的参数来描述的分布类型。 这些参数通常被收集在一起以形成单个k维参数矢量θ=(θ1,θ2,...,θk)。

联邦学习技术

如何在保护数据隐私、满足合法合规要求的前提下继续进行机器学习,这部分研究被称为「联邦学习」(Federated Learning)。

推荐文章
暂无评论
暂无评论~