Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

彻底摒弃人工标注,AutoAlign方法基于大模型让知识图谱对齐全自动化

图片
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

本工作由来自清华大学、墨尔本大学、香港中文大学、中国科学院大学的 Rui Zhang, Yixin Su, Bayu Distiawan Trisedya, Xiaoyan Zhao, Min Yang, Hong Cheng, Jianzhong Qi 等学者团队联合完成。该团队专注于大模型、知识图谱、推荐搜索、自然语言处理、大数据等方向的研究。

知识图谱作为结构化知识的重要载体,广泛应用于信息检索、电商、决策推理等众多领域。然而,由于不同机构或方法构建的知识图谱存在表示方式、覆盖范围等方面的差异,如何有效地将不同的知识图谱进行融合,以获得更加全面、丰富的知识体系,成为提高知识图谱覆盖度和准确率的重要问题,这就是知识图谱对齐(Knowledge Graph Alignment)任务所要解决的核心挑战。
 
传统的知识图谱对齐方法必须依赖人工标注来对齐一些实体(entity)和谓词(predicate)等作为种子实体对。这样的方法昂贵、低效、而且对齐的效果不佳。来自清华大学、墨尔本大学、香港中文大学、中国科学院大学的学者联合提出了一种基于大模型的全自动进行知识图谱对齐的方法——AutoAlign。AutoAlign彻底不需要人工来标注对齐的种子实体或者谓词对,而是完全通过算法对于实体语义和结构的理解来进行对齐,显著提高了效率和准确性。

图片

  • 论文:AutoAlign: Fully Automatic and Effective Knowledge Graph Alignment enabled by Large Language Models,36 (6) TKDE 2024
  • 论文链接:https://arxiv.org/abs/2307.11772
  • 代码链接:https://github.com/ruizhang-ai/AutoAlign

模型介绍

AutoAlign 主要由两部分组成:

  • 用于将谓词(predicate)对齐的词嵌入模块(Predicate Embedding Module)。
  • 用于将实体(entity)对齐的实体嵌入学习部分,包括两个模块:属性嵌入模块 (Attribute Embedding Module)和结构嵌入模块(Structure Embedding Module)。

总体流程如下图所示:

图片

词嵌入模块:谓词嵌入模块旨在对齐两个知识图谱中代表相同含义的谓词。例如,将“is_in”和“located_in”进行对齐。为了实现这一目标,研究团队创建了一个谓词邻近图(Predicate Proximity Graph),将两个知识图谱合并成一个图,并将其中的实体替换为其对应的类型(Entity Type)。这种方式基于以下假设:相同(或相似)的谓词,其对应的实体类型也应相似(例如,“is_in”和“located_in”的目标实体类型大概率属于location或city)。通过大语言模型对类型的语义理解,进一步对齐这些类型,提高了三元组学习的准确性。最终,通过图编码方法(如TransE)对谓词邻近图的学习,使得相同(或相似)的谓词具有相似的嵌入,从而实现谓词的对齐。
 
具体实现上,研究团队首先构建谓词邻近图。谓词邻近图是一种描述实体类型之间关系的图。实体类型表示实体的广泛类别,可以自动链接不同的实体。即使某些谓词的表面形式不同(例如“lgd:is_in”和“dbp:located_in”),通过学习谓词邻近图,可以有效识别它们的相似性。构建谓词邻近图的步骤如下:

  • 实体类型提取:研究团队通过获取每个实体在知识图谱中的rdfs:type谓词的值来提取实体类型。通常,每个实体有多个类型。例如,德国(Germany)实体在知识图谱中可能有多个类型,如“thing”、“place”、“location”和“country”。在谓词邻近图中,他们用一组实体类型替换每个三元组的头实体和尾实体。
  • 类型对齐:由于不同知识图谱中的实体类型可能使用不同的表面形式(例如,“person”和“people”),研究团队需要对齐这些类型。为此,研究团队利用最新的大语言模型(如ChatGPT和Claude)来自动对齐这些类型。例如,研究团队可以使用Claude2来识别两个知识图谱中相似的类型对,然后将所有相似类型对齐为统一的表示形式。为此,研究团队设计了一套自动化提示词(prompt),能够根据不同的知识图谱进行自动化对齐词的获取。

为了捕捉谓词相似性,需要聚合多个实体类型。研究团队提出了两种聚合方法:加权和基于注意力的函数。在实验中,他们发现基于注意力的函数效果更好。具体而言,他们计算每个实体类型的注意力权重,并通过加权求和的方式获得最终的伪类型嵌入。接下来,研究团队通过最小化目标函数来训练谓词嵌入,使得相似的谓词具有相似的向量表示。

属性嵌入模块和结构嵌入模块:属性嵌入模块和结构嵌入模块都用于实体(entity)对齐。它们的思想和谓词嵌入相似,即对于相同(或相似)的实体,其对应的三元组中的谓词和另一个实体也应该具有相似性。因此,在谓词对齐(通过谓词嵌入模块)和属性对齐(通过 Attribute Character Embeding 方法)的情况下,我们可以通过TransE使相似的实体学习到相似的嵌入。具体来说:

  • 属性嵌入学习:属性嵌入模块通过编码属性值的字符序列来建立头实体和属性值之间的关系。研究团队提出了三种组合函数来编码属性值:求和组合函数、基于LSTM的组合函数和基于N-gram的组合函数。通过这些函数,我们能够捕捉属性值之间的相似性,从而使得两个知识图谱中的实体属性可以对齐。
  • 结构嵌入学习:结构嵌入模块基于TransE方法进行了改进,通过赋予不同邻居不同的权重来学习实体的嵌入。已对齐的谓词和隐含对齐的谓词将获得更高的权重,而未对齐的谓词则被视为噪声。通过这种方式,结构嵌入模块能够更有效地从已对齐的三元组中学习。
  • 联合训练:谓词嵌入模块、属性嵌入模块和结构嵌入模块这三个模块可以进行交替训练,通过交替学习的方式互相影响,通过优化嵌入使其在各个结构的表示中达到整体最优。训练完成后,研究团队获得了实体(entity)、谓词(predicate)、属性(attribute)和类型(type)的嵌入表示。最后,我们通过对比两个知识图谱中的实体相似性(如cosine similarity),找到相似性高的实体对(需要高于一个阈值)来进行实体对齐。

实验结果

研究团队在最新的基准数据集DWY-NB (Rui Zhang, 2022) 上进行了实验,主要结果如下表所示。

图片

AutoAlign在知识图谱对齐性能方面有显著提升,特别是在缺少人工标注种子的情况下,表现尤为出色。在没有人工标注的情况下,现有的模型几乎无法进行有效对齐。然而,AutoAlign在这种条件下依然能够取得优异的表现。在两个数据集上,AutoAlign在没有人工标注种子的情况下,相比于现有最佳基准模型(即使有人工标注)有显著的提升。这些结果表明,AutoAlign不仅在对齐准确性上优于现有方法,而且在完全自动化的对齐任务中展现了强大的优势。

参考文献:
Rui Zhang, Bayu D. Trisedya, Miao Li, Yong Jiang, and Jianzhong Qi (2022). A Benchmark and Comprehensive Survey on Knowledge Graph Entity Alignment via Representation Learning. VLDB Journal, 31 (5), 1143–1168, 2022.
工程AutoAlign知识图谱
相关数据
清华大学机构

清华大学(Tsinghua University),简称“清华”,由中华人民共和国教育部直属,中央直管副部级建制,位列“211工程”、“985工程”、“世界一流大学和一流学科”,入选“基础学科拔尖学生培养试验计划”、“高等学校创新能力提升计划”、“高等学校学科创新引智计划”,为九校联盟、中国大学校长联谊会、东亚研究型大学协会、亚洲大学联盟、环太平洋大学联盟、清华—剑桥—MIT低碳大学联盟成员,被誉为“红色工程师的摇篮”。 清华大学的前身清华学堂始建于1911年,因水木清华而得名,是清政府设立的留美预备学校,其建校的资金源于1908年美国退还的部分庚子赔款。1912年更名为清华学校。1928年更名为国立清华大学。1937年抗日战争全面爆发后南迁长沙,与北京大学、南开大学组建国立长沙临时大学,1938年迁至昆明改名为国立西南联合大学。1946年迁回清华园。1949年中华人民共和国成立,清华大学进入了新的发展阶段。1952年全国高等学校院系调整后成为多科性工业大学。1978年以来逐步恢复和发展为综合性的研究型大学。

http://www.tsinghua.edu.cn/
相关技术
信息检索技术

信息检索(IR)是基于用于查询检索信息的任务。流行的信息检索模型包括布尔模型、向量空间模型、概率模型和语言模型。信息检索最典型和最常见的应用是搜索引擎。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

词嵌入技术

词嵌入是自然语言处理(NLP)中语言模型与表征学习技术的统称。概念上而言,它是指把一个维数为所有词的数量的高维空间嵌入到一个维数低得多的连续向量空间中,每个单词或词组被映射为实数域上的向量。

知识图谱技术

知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。 知识图谱这个概念最早由Google提出,主要是用来优化现有的搜索引擎。不同于基于关键词搜索的传统搜索引擎,知识图谱可用来更好地查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。比如在Google的搜索框里输入Bill Gates的时候,搜索结果页面的右侧还会出现Bill Gates相关的信息比如出生年月,家庭情况等等。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

目标函数技术

目标函数f(x)就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

推荐文章
暂无评论
暂无评论~