Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

爆火免费书《深入理解深度学习》终于出中文版了

这可能是当今最全面、最新的深度学习概述之一。

爆火的深度学习领域,最近又有了热门学习资料。

近日,麻省理工出版社的新书《Understanding Deep Learning》(深入理解深度学习)迎来了中文版。

图片

这本书一共分为 21 个章节,涵盖了深度学习领域的许多关键概念,包括基本构建、Transformer 架构、神经网络 GNN、强化学习 RL、扩散模型等等。对于不论是初学者,还是已有工作经验的开发者来说都有极高的价值。

  • GitHub 链接:https://github.com/careywyr/UnderstandingDeepLearning-ZH-CN

  • 书籍原链接:https://udlbook.github.io/udlbook/

目前,该书的英文电子版下载量已达到 34.4 万。

图片

该书的实体版本在去年 12 月正式发布,全书共 541 页,不过它的电子版一直在继续更新。目前在网站上,作者还提供了 68 个 Python 笔记本练习,可以帮助读者通过编程实践加深理解。

本书希望以准确易懂的方式,向人们介绍深度学习的基础思想,旨在帮助刚入门的读者理解深度学习背后的原理。对于想要深入理解本书内容的读者来说,只需要本科水平的数学知识就能读懂。

具体来说,该书在前面的部分介绍了深度学习模型,并讨论了如何训练、评估这些模型,如何提高它们的性能的方法。在接下来的部分,作者会带领我们考察专门用于图像、文本和图数据的架构。后续的章节探讨了生成模型强化学习。倒数第二章探讨了这些以及其他尚未完全理解的方面。最后一章讨论了 AI 伦理。

目录

第一章 - Introduction 介绍

第二章 - Supervised learning 监督学习

第三章 - Shallow neural networks 浅层神经网络

第四章 - Deep neural networks 深度神经网络

第五章 - Loss functions 损失函数

第六章 - Fitting models 训练模型

第七章 - Gradients and initialization 梯度和初始化

第八章 - Measuring performance 性能评估

第九章 - Regularization 正则化

第十章 - Convolutional networks 卷积网络

第十一章 - Residual networks 残差网络

第十二章 - Transformers

第十三章 - Graph neural networks 神经网络

第十四章 - Unsupervised learning 无监督学习

第十五章 - Generative adversarial networks 生成对抗网络

第十六章 - Normalizing flows 标准化流

第十七章 - Variational autoencoders 变分自编码器

第十八章 - Diffusion models 扩散模型

第十九章 - Deep reinforcement learning 深度强化学习

第二十章 - Why does deep learning work? 为什么深度学习有效?

第二十一章 - Deep learning and ethics 深度学习与伦理

作者介绍

《深入理解深度学习》的作者是英国巴斯大学(University of Bath)计算机科学教授 Simon J.D. Prince,他专注于研究计算机视觉计算机图形学。

图片

领英资料显示,Simon J.D. Prince 十几年来一直在研究机构从事计算机科学和 AI 研究工作,例如曾在软件开发公司 Anthropics Technology 担任 7 年首席科学家。2022 年,他加入巴斯大学任名誉教授。

图片

Simon J.D. Prince 已在顶级会议(CVPR、ICCV、SIGGRAPH 等)上发表超过 50 篇论文。他还是《计算机视觉:模型、学习和推理》的作者。

图片

参考链接:

https://x.com/tuturetom/status/1814689613304508777

入门Understanding Deep Learning深度学习
1
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

深度强化学习技术

强化学习(Reinforcement Learning)是主体(agent)通过与周围环境的交互来进行学习。强化学习主体(RL agent)每采取一次动作(action)就会得到一个相应的数值奖励(numerical reward),这个奖励表示此次动作的好坏。通过与环境的交互,综合考虑过去的经验(exploitation)和未知的探索(exploration),强化学习主体通过试错的方式(trial and error)学会如何采取下一步的动作,而无需人类显性地告诉它该采取哪个动作。强化学习主体的目标是学习通过执行一系列的动作来最大化累积的奖励(accumulated reward)。 一般来说,真实世界中的强化学习问题包括巨大的状态空间(state spaces)和动作空间(action spaces),传统的强化学习方法会受限于维数灾难(curse of dimensionality)。借助于深度学习中的神经网络,强化学习主体可以直接从原始输入数据(如游戏图像)中提取和学习特征知识,然后根据提取出的特征信息再利用传统的强化学习算法(如TD Learning,SARSA,Q-Learnin)学习控制策略(如游戏策略),而无需人工提取或启发式学习特征。这种结合了深度学习的强化学习方法称为深度强化学习。

计算机图形技术

图像数据处理、计算机图像(英语:Computer Graphics)是指用计算机所创造的图形。更具体的说,就是在计算机上用专门的软件和硬件用来表现和控制图像数据。

变分自编码器技术

变分自编码器可用于对先验数据分布进行建模。从名字上就可以看出,它包括两部分:编码器和解码器。编码器将数据分布的高级特征映射到数据的低级表征,低级表征叫作本征向量(latent vector)。解码器吸收数据的低级表征,然后输出同样数据的高级表征。变分编码器是自动编码器的升级版本,其结构跟自动编码器是类似的,也由编码器和解码器构成。在自动编码器中,需要输入一张图片,然后将一张图片编码之后得到一个隐含向量,这比原始方法的随机取一个随机噪声更好,因为这包含着原图片的信息,然后隐含向量解码得到与原图片对应的照片。但是这样其实并不能任意生成图片,因为没有办法自己去构造隐藏向量,所以它需要通过一张图片输入编码才知道得到的隐含向量是什么,这时就可以通过变分自动编码器来解决这个问题。解决办法就是在编码过程给它增加一些限制,迫使其生成的隐含向量能够粗略的遵循一个标准正态分布,这就是其与一般的自动编码器最大的不同。这样生成一张新图片就比较容易,只需要给它一个标准正态分布的随机隐含向量,这样通过解码器就能够生成想要的图片,而不需要给它一张原始图片先编码。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

图神经网络技术

图网络即可以在社交网络或其它基于图形数据上运行的一般深度学习架构,它是一种基于图结构的广义神经网络。图网络一般是将底层图形作为计算图,并通过在整张图上传递、转换和聚合节点特征信息,从而学习神经网络基元以生成单节点嵌入向量。生成的节点嵌入向量可作为任何可微预测层的输入,并用于节点分类或预测节点之间的连接,完整的模型可以通过端到端的方式训练。

生成模型技术

在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。 它给观测值和标注数据序列指定一个联合概率分布。 在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

生成对抗技术

生成对抗是训练生成对抗网络时,两个神经网络相互博弈的过程。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。

推荐文章
暂无评论
暂无评论~