Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

Mistral AI两连发:7B数学推理专用、Mamba2架构代码大模型

网友很好奇,Mathstral能不能搞定「9.11和9.9谁大」这一问题。

昨天,AI圈竟然被「9.11和9.9谁大」这样简单的问题攻陷了,包括OpenAI GPT-4o、Google Gemini等在内的大语言模型都翻了车。图片

图片

这让我们看到,大语言模型在处理一些数字问题时并不能像人类那样理解并给出正确的答案。

对于数字以及复杂的数学问题,专用模型更术业有专攻。

今天,法国大模型独角兽 Mistral AI 发布了一个专注于数学推理和科学发现的7B大模型「Mathstral」,来解决需要复杂、多步骤逻辑推理的高级数学问题。

该模型基于 Mistral 7B 构建,支持的上下文窗口长度为32k,遵循的开源协议为Apache 2.0 license。

Mathstral在构建时追求出色的性能与速度权衡,这是 Mistral AI积极推广的一种开发理念,尤其是微调功能。

图片

同时,Mathstral是一个指令型模型,可以使用它或者对它进行微调。模型权重已经放在了HuggingFace上。

  • 模型权重:https://huggingface.co/mistralai/mathstral-7B-v0.1

下图为 Mathstral 7B和Mistral 7B之间的MMLU性能差异(按学科划分)。

Mathstral在各种行业标准基准上都达到其规模范围内的 SOTA 推理性能。尤其是在MATH数据集上,它取得了 56.6%的通过率,在MMLU上取得了63.47%的通过率。

图片

同时,Mathstral在MATH上的通过率(56.6%)比 Minerva 540B 高出 20% 以上。此外,Mathstral 在MATH 上以多数投票@64的成绩得分为68.4%,使用奖励模型的成绩为 74.6%。

图片

这一成绩也让网友好奇,Mathstral能不能搞定「9.11和9.9谁大」这一问题。

图片

代码大模型:Codestral Mamba

图片

  • 模型权重:https://huggingface.co/mistralai/mamba-codestral-7B-v0.1

与Mathstral 7B一同发布的,还有一款专门用于代码生成的Codestral Mamba模型,使用的是Mamba2架构,同样遵循Apache 2.0 license开源协议。这是一个指导模型,有70多亿参数,研究者可以免费使用、修改和分发。

值得一提的是,Codestral Mamba是在Mamba作者Albert Gu、Tri Dao帮助下设计完成的。

一直以来,Transformer 架构撑起了AI领域的半壁江山,然而,与 Transformer 不同的是,Mamba 模型具有线性时间推理优势,并且理论上能够对无限长度的序列进行建模。该架构允许用户广泛地与模型互动,并且响应迅速,而不受输入长度的限制。这种效率对于代码生成尤其重要 。

基准测试中,Codestral Mamba 在 HumanEval 测试中的表现优于竞争对手开源模型 CodeLlama 7B、CodeGemma-1.17B 和 DeepSeek。 

图片

Mistral 测试了该模型,该模型可以在 Mistral 的 la Plateforme API 上免费使用,可处理多达 256,000 个token的输入——是 OpenAI 的 GPT-4o 的两倍。

随着Codestral Mamba发布,就有网友在 VSCode中用起来了,很是丝滑。

图片

参考链接:
https://mistral.ai/news/mathstral/
https://mistral.ai/news/codestral-mamba/
产业MathstralMistral AI
1
相关数据
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

逻辑推理技术

逻辑推理中有三种方式:演绎推理、归纳推理和溯因推理。它包括给定前提、结论和规则

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

OpenAI GPT技术

GPT 是“Generative Pre-Training”的简称,从名字看其含义是指的生成式的预训练。GPT 也采用两阶段过程,第一个阶段是利用语言模型进行预训练,第二阶段通过 Fine-tuning 的模式解决下游任务。它与ELMO 主要不同在于两点:特征抽取器不是用的 RNN,而是用的 Transformer;GPT 的预训练虽然仍然是以语言模型作为目标任务,但是采用的是单向的语言模型。

语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

推荐文章
暂无评论
暂无评论~