获胜的 AI 数学奥林匹克模型出炉!
第 1 阶段:在自然语言数学问题和解决方案的大型、多样化数据集上微调基本模型,其中每个解决方案都使用思维链 (CoT) 进行模板化以促进推理。 第 2 阶段:在工具集成推理(TIR)的合成数据集上微调第 1 阶段得到的模型,其中每个数学问题都分解为一系列基本原理、Python 程序及其输出。这里会 prompt GPT-4 生成带有代码执行反馈的 ToRA 格式(微软)解决方案。在这些数据上进行微调会产生一个推理智能体,它可以通过结合自然语言推理和使用 Python REPL 来计算中间结果,以解决数学问题。