Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

ICML 2024| 大语言模型助力基于CLIP的分布外检测任务

当训练数据集和测试数据集的分布相同时,机器学习模型可以表现出优越的性能。然而在开放世界环境中,模型经常会遇到分布外(Out-of-Distribution, OOD,下称“OOD”)样本,OOD样本可能会导致模型做出不可预测的行为,而错误的后果可能是致命的,尤其是在自动驾驶等高风险场景中 [1, 2]。因此OOD检测对于保障机器学习模型在实际部署中的可靠性至关重要。

大多数OOD检测方法 [1, 3] 可以基于训练有素的分布内 (In-Distribution, ID) 分类器有效地检测 OOD 样本。然而,对于不同的ID数据集,它们需要重新训练分类器才能进行OOD检测。此外,这些方法仅依赖于视觉模式,而忽略了视觉图像与文本标签之间的联系。随着大规模视觉语言模型(Vision-Manguage Models , VLMs,例如CLIP [4])的出现,使得零样本 OOD 检测成为了可能[5]。通过构建仅具有 ID 类别标签的文本分类器,能够实现在无需重新训练分类器的情况下跨不同的 ID 数据集检测 OOD 样本。

尽管现有的基于CLIP的分布外检测方法展现出了令人印象深刻的性能,但是它们在遇到较难检测的分布外样本时常常会检测失败,我们认为现有仅依赖ID 类别标签构建文本分类器的方法很大程度上限制了 CLIP 识别来自开放标签空间样本的固有能力。如图1 (a) 所示,仅依赖ID 类别标签构建文本分类器的方法难以区分较难检测的OOD样本 (ID数据集:CUB-200-2011,OOD数据集:Places)。

图1. 研究动机示意图:(a) 仅依赖ID 类别标签构建文本分类器, (b) 使用真实OOD标签, (c) 使用LLM想象潜在的异常值暴露

在这项工作中,我们提出了一种名为Envisioning Outlier Exposure (EOE) 的分布外检测方法,该方法利用通过利用大型语言模型 (LLM) 的专家知识和推理能力来想象潜在的异常值暴露,从而提升VLMs的OOD检测性能 (如图1 (c) 所示),同时无需访问任何实际的 OOD 数据。我们设计了 (1) 基于视觉相似性的 LLM 提示,以生成专门用于 OOD 检测的潜在异常值类标签,以及 (2) 基于潜在异常值惩罚的新评分函数,以有效区分难以识别的 OOD 样本。实验表明,EOE 在不同的 OOD 任务中实现了优越的性能,并且可以有效地扩展到 ImageNet-1K 数据集。

Ø论文链接:https://arxiv.org/pdf/2406.00806

Ø代码链接:https://github.com/tmlr-group/EOE

接下来将简要地向大家分享我们近期发表在 ICML 2024 上的分布外检测方向的研究结果。

预备知识

方法介绍

EOE旨在通过利用 LLM 生成潜在的异常值类别标签来提高零样本 OOD 检测性能。然而,由于模型部署时遇到的OOD类别是未知的,那么,我们应该如何引导 LLM 生成所需的异常值类别标签?在获取异常值类别标签后,我们如何才能更好地区分 ID 和 OOD 样本?为了解决这些问题,我们提出了基于视觉相似性原则设计的专门针对 OOD 检测的 LLM 提示,并引入了一种新颖的评分函数来更好地区分ID/OOD样本。我们方法的总体框架如图 2所示。

图2. EOE总体框架图

Fine-grained OOD 检测也称为开放集识别,在Fine-grained OOD 检测中,ID 和 OOD 样本都属于同一主要类别(例如“鸟”类),并且子类之间存在内在的视觉相似性 (例如“麻雀”和“燕子”)。因此,指示 LLM 直接提供同一主要类别内的不同子类更为合适。

以上三种OOD 检测的 LLM 提示如图3所示

图3. 基于视觉相似性原则设计的三类LLM提示

图4. EOE伪代码

我们的方法优点总结如下:

EOE 不依赖于未知 OOD 数据的先验知识,因此特别适合开放世界场景。

零样本:同一个预训练模型可有效地应用于各种特定于任务的 ID 数据集,而无需对每个特定 ID 数据集进行单独训练。EOE 仅通过了解 ID 类标签即可实现卓越的 OOD 检测性能。

可扩展性和通用性:与同样生成潜在OOD 类标签的现有零样本 OOD 检测方法 [6]相比,EOE 可以轻松应用于 ImageNet-1K 等大规模数据集。此外,EOE 在不同任务中表现出通用性,包括Far, Near和Fine-grainedOOD 检测。

实验结果

我们在不同OOD任务的多个数据集上进行了实验。表1展示了在ImageNet-1K 上进行Far OOD 检测实验结果,其中,Ground Truth表示使用真实OOD标签时的性能,在实际部署中是不可获取的。结果表明,EOE 与微调方法相当,并超越了 MCM [5]。

表1. Far OOD实验结果

我们也报告了在Near OOD和Fine-grained OOD任务上的实验结果,如表2和表3所示,我们的方法均实现了最佳的检测性能。

表2. Near OOD实验结果

表3. Fine-grained OOD实验结果

我们对EOE的各个模型进行了消融实验,包括不同的得分函数,LLM提示:不同的LLM和不同长度的潜在OOD 类标签数量。实验表明,我们设计的得分函数和基于视觉相似性原则设计的LLM prompt获得了最优的性能,并且我们的方法在不同的LLM和不同长度的潜在OOD 类标签数量上都获得了优异的表现。同时,我们也对视觉语言模型的结构进行了消融实验,详细的实验结果请大家参考原文。

图5. 消融实验 –不同的得分函数、LLM提示和不同的LLM

图5. 消融实验 –生成潜在OOD 类标签数量

我们对EOE的有效性进行了分析,实际上,生成的异常类标签不太可能有很高的概率命中真实值 OOD 类。这是因为在模型的实际部署中遇到的 OOD 数据是多种多样,且不可预测的。然而,通过视觉相似性规则引导,即使没有命中真实的OOD类的情况下,EOE生成的潜在异常类标签仍然可以提高模型在 OOD 检测中的表现。

为了说明以上论点,我们展示了通过 T-SNE从标签匹配分数的 softmax 输出中得出的可视化效果。我们的 EOE 与对比方法 MCM 之间的可视化结果如图6所示。基于 ImageNet-10 的 ID 类标签,LLM 生成基于视觉相似性规则的潜在异常标签“潜艇”。当遇到 OOD 类 “蒸汽机车”(ImageNet-20 中的类)时,“蒸汽机车” 在 和 中与“潜艇”的相似度最高。因此,EOE 会将其聚类为 “潜艇”,从而将其检测为 OOD 类。然而,如果没有潜在的异常类标签,我们可以发现 MCM 倾向于将所有 OOD 类标签聚类在一起。这可能导致将难以识别的 OOD 样本识别为 ID 类。总之,在我们的 EOE 框架中,1) 属于同一类的 OOD 样本倾向于被聚集在一起,2) 同一组的样本被归类到与它们在视觉上相似的设想的异常值类中(“蒸汽机车” vs“潜艇”)。这些观察结果表明,我们的 EOE 可以在不触及实际 OOD 类别的情况下增强 OOD 检测,并且在语义上也更易于解释。我们希望这项工作能为 OOD 检测领域的未来研究提供一个新的思路。

图6. 可视化结果

参考文献

[1] Hendrycks, D. and Gimpel, K. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR, 2017. 

[2] Yang, J., Zhou, K., Li, Y., and Liu, Z. Generalized out-of-distribution detection: A survey. arXiv preprint arXiv:2110.11334, 2021.

[3] Liu, W., Wang, X., Owens, J., and Li, Y. Energy-based out-of-distribution detection. In NeurIPS, 2020.

[4] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. Learning transferable visual models from natural language supervision. In ICML, 2021.

[5] Ming, Y., Cai, Z., Gu, J., Sun, Y., Li, W., and Li, Y. Delving into out-of-distribution detection with vision-language representations. In NeurIPS, 2022.

[6] Esmaeilpour, S., Liu, B., Robertson, E., and Shu, L. Zeroshot out-of-distribution detection based on the pre-trained model clip. In AAAI, 2022.

课题组介绍

香港浸会大学可信机器学习和推理课题组 (TMLR Group) 由多名青年教授、博士后研究员、博士生、访问博士生和研究助理共同组成,课题组隶属于理学院计算机系。课题组专攻可信表征学习、基于因果推理的可信学习、可信基础模型等相关的算法,理论和系统设计以及在自然科学上的应用,具体研究方向和相关成果详见本组Github (https://github.com/tmlr-group)。课题组由政府科研基金以及工业界科研基金资助,如香港研究资助局杰出青年学者计划,国家自然科学基金面上项目和青年项目,以及微软、英伟达、百度、阿里、腾讯等企业的科研基金。青年教授和资深研究员手把手带,GPU计算资源充足,长期招收多名博士后研究员、博士生、研究助理和研究实习生。此外,本组也欢迎自费的访问博士后研究员、博士生和研究助理申请,访问至少3-6个月,支持远程访问。有兴趣的同学请发送个人简历和初步研究计划到邮箱 (bhanml@comp.hkbu.edu.hk)。

TMLRGroup
TMLRGroup

TMLRGroup是可信机器学习和推理领域的前沿课题组之一,致力于机器学习,深度学习和基础模型的研究,以及这些方法在自然科学和交叉学科上的应用。官网地址: https://github.com/tmlr-group

https://github.com/tmlr-group
理论
1
相关数据
因果推理技术

基于因果关系的一类推理方法,是一种常见推理模式,涉及观察到的共同效应的原因的概率依赖性。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

文本分类技术

该技术可被用于理解、组织和分类结构化或非结构化文本文档。文本挖掘所使用的模型有词袋(BOW)模型、语言模型(ngram)和主题模型。隐马尔可夫模型通常用于词性标注(POS)。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

伪代码技术

伪代码,又称为虚拟代码,是高层次描述算法的一种方法。它不是一种现实存在的编程语言;它可能综合使用多种编程语言的语法、保留字,甚至会用到自然语言。 它以编程语言的书写形式指明算法的职能。相比于程序语言它更类似自然语言。它是半形式化、不标准的语言。

表征学习技术

在机器学习领域,表征学习(或特征学习)是一种将原始数据转换成为能够被机器学习有效开发的一种技术的集合。在特征学习算法出现之前,机器学习研究人员需要利用手动特征工程(manual feature learning)等技术从原始数据的领域知识(domain knowledge)建立特征,然后再部署相关的机器学习算法。虽然手动特征工程对于应用机器学习很有效,但它同时也是很困难、很昂贵、很耗时、并依赖于强大专业知识。特征学习弥补了这一点,它使得机器不仅能学习到数据的特征,并能利用这些特征来完成一个具体的任务。

先验知识技术

先验(apriori ;也译作 先天)在拉丁文中指“来自先前的东西”,或稍稍引申指“在经验之前”。近代西方传统中,认为先验指无需经验或先于经验获得的知识。先验知识不依赖于经验,比如,数学式子2+2=4;恒真命题“所有的单身汉一定没有结婚”;以及来自纯粹理性的推断“本体论证明”

腾讯机构

腾讯,1998年11月诞生于中国深圳,是一家以互联网为基础的科技与文化公司。我们的使命是“通过互联网服务提升人类生活品质”。腾讯秉承着 “一切以用户价值为依归”的经营理念,为亿万网民提供优质的互联网综合服务。 腾讯的战略目标是“连接一切”,我们长期致力于社交平台与数字内容两大核心业务:一方面通过微信与QQ等社交平台,实现人与人、服务及设备的智慧连接;另一方面为数以亿计的用户提供优质的新闻、视频、游戏、音乐、文学、动漫、影业等数字内容产品及相关服务。我们还积极推动金融科技的发展,通过普及移动支付等技术能力,为智慧交通、智慧零售、智慧城市等领域提供有力支持。

http://www.tencent.com/
相关技术
聚类技术

将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

推荐文章
暂无评论
暂无评论~