Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

英伟达开源最强通用模型Nemotron-4 340B

性能超越 Llama-3,主要用于合成数据。


英伟达的通用大模型 Nemotron,开源了最新的 3400 亿参数版本。

本周五,英伟达宣布推出 Nemotron-4 340B。它包含一系列开放模型,开发人员可以使用这些模型生成合成数据,用于训练大语言模型(LLM),可用于医疗健康、金融、制造、零售等所有行业的商业应用。

高质量的训练数据在自定义 LLM 的响应性能、准确性和质量中起着至关重要的作用 —— 但强大的数据集经常是昂贵且难以访问的。通过独特的开放模型许可,Nemotron-4 340B 为开发人员提供了一种免费、可扩展的方式来生成合成数据,从而帮助人们构建强大的 LLM。

Nemotron-4 340B 系列包括基础、Instruct 和 Reward 模型,它们形成了一个 pipeline,用于生成训练和改进 LLM 的合成数据。这些模型经过优化,可与 NVIDIA NeMo 配合使用,后者是一个用于端到端模型训练的开源框架,包括数据管理、定制和评估。它们还针对开源 NVIDIA TensorRT-LLM 库的推理进行了优化。

英伟达表示,Nemotron-4 340B 现已可从 Hugging Face 下载。开发人员很快就能在 ai.nvidia.com 上访问这些模型,它们将被打包为 NVIDIA NIM 微服务,并带有可在任何地方部署的标准应用程序编程接口。

Hugging Face 下载:https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911

导航 Nemotron 以生成合成数据

语言模型可以帮助开发人员在无法访问大型、多样化标记数据集的情况下生成合成训练数据。

Nemotron-4 340B Instruct 模型创建了多样化的合成数据,模仿了现实世界数据的特征,有助于提高数据质量,从而提高自定义 LLM 在各个领域的性能和鲁棒性。

为了提高 AI 生成的数据的质量,开发人员可以使用 Nemotron-4 340B Reward 模型来筛选高质量的响应。Nemotron-4 340B Reward 根据五个属性对响应进行评分:可用性、正确性、连贯性、复杂性和冗长性。它目前在 AI2 创建的 Hugging Face RewardBench 排行榜上名列第一,用于评估奖励模型的能力、安全性和缺陷。
图片
在这个合成数据 pipeline 中,(1)Nemotron-4 340B Instruct 模型用于生成基于文本的合成输出。然后,评估模型(2) Nemotron-4 340B Reward 评估生成的文本并提供反馈,从而指导迭代改进并确保合成数据的准确。

研究人员还可以使用自己的专有数据,结合已包含的 HelpSteer2 数据集,来定制 Nemotron-4 340B 基础模型,从而创建自有的 Instruct 模型或奖励模型。
图片
                                   论文地址:https://d1qx31qr3h6wln.cloudfront.net/publications/Nemotron_4_340B_8T_0.pdf

方法介绍

Nemotron-4-340B-Base 模型架构是一种标准的仅解码器 Transformer 架构,具有因果注意力掩码、旋转位置嵌入 (RoPE)、SentencePiece tokenizer 等。Nemotron-4-340B-Base 的超参数如表 1 所示。它有 94 亿个嵌入参数和 3316 亿个非嵌入参数
图片
下表为 Nemotron-4-340B-Base 模型的一些训练细节,表中总结了批大小渐变的 3 个阶段,包括每次迭代时间和模型 FLOP/s 利用率。
图片
为了开发强大的奖励模型,英伟达收集了一个包含 10k 人类偏好数据的数据集,称为 HelpSteer2,并公开发布了这个数据集 。

数据集地址:https://huggingface.co/datasets/nvidia/HelpSteer2

回归奖励模型 Nemotron-4-340B-Reward 建立在 Nemotron-4-340B-Base 模型之上,并用新的奖励头替换最后的 softmax 层。这个头是一个线性投影,它将最后一层的隐藏状态映射到 HelpSteer 属性(有用性、正确性、连贯性、复杂性、冗长性)的五维向量中。在推理过程中,这些属性值可以通过加权和聚合为总体奖励。这种奖励模式为训练 Nemotron-4-340B-Instruct 提供了坚实的基础。

该研究发现这样的模型在 RewardBench 上表现非常出色:
图片
用 NeMo 微调,用 TensorRT-LLM 优化推理

使用开源的 NVIDIA NeMo 和 NVIDIA TensorRT-LLM,开发者可以优化他们的指导模型和奖励模型的效率,从而生成合成数据并对响应进行评分。

所有 Nemotron-4 340B 模型都使用 TensorRT-LLM 进行了优化,以利用张量并行性,这是一种模型并行性,其中单个权重矩阵在多个 GPU 和服务器上分割,从而实现大规模的高效推理。

Nemotron-4 340B Base 经过 9 万亿个 token 的训练,可以使用 NeMo 框架进行定制,以适应特定的用例或领域。这种微调过程受益于大量的预训练数据,并为特定的下游任务提供更准确的输出。

在这当中,NeMo 框架提供了多种定制方法,包括监督微调和参数高效微调方法,如低秩自适应 (LoRA)。

为了提升模型质量,开发者可以使用 NeMo Aligner 和由 Nemotron-4 340B Reward 注释的数据集对其模型进行对齐。对齐是训练大型语言模型的一个关键步骤,其中模型行为通过使用类似 RLHF 算法进行微调,以确保其输出安全、准确、符合上下文且与其既定目标一致。 

 寻求企业级支持和生产环境安全的企业也可以通过云原生的 NVIDIA AI Enterprise 软件平台访问 NeMo 和 TensorRT-LLM。该平台为生成式 AI 基础模型提供了加速和高效的运行时环境。 

评测数据

图 1 突出显示了 Nemotron-4 340B 模型家族在选定任务中的准确性。具体来说:

Nemotron-4-340B-Base 在 ARC-Challenge、MMLU 和 BigBench Hard 基准常识推理任务上与 Llama-3 70B、Mixtral 8x22B 和 Qwen-2 72B 等开放访问基础模型相媲美。

在指令遵循和聊天功能方面,Nemotron-4-340B-Instruct 超越了相应的指令模型。Nemotron-4-340B Reward 在 RewardBench 上实现了最高准确率,甚至超越了 GPT-4o-0513 和 Gemini 1.5 Pro-0514 等专有模型。
图片
在 Nemotron-4-340B 推出后,评测平台立即放出了它的基准成绩,可见在 Arena-Hard-Auto 等硬基准测试中它的成绩超越了 Llama-3-70b
图片
这是否意味着,新的业界最强大模型已经出现?

参考链接:
https://blogs.nvidia.com/blog/nemotron-4-synthetic-data-generation-llm-training/
https://x.com/lmsysorg/status/1801682893988892716
产业Nemotron英伟达
1
相关数据
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

数据管理技术

数据管理是利用计算机硬件和软件技术对数据进行有效的收集、存储、处理和应用的过程,其目的在于充分有效地发挥数据的作用。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

常识推理技术

常识推理是人工智能(AI)的一个分支,它关注模拟人类每天遇到的普通情境的类型和本质的假设。这些假设包括对人和物体的物理特性,目的,意图和行为的判断,以及他们的行为和相互作用的可能结果。展示常识推理的设备将能够预测结果并得出类似于人类民间心理学(人类对人们的行为和意图进行推理的天生能力)和天真物理学(人类对物理世界的自然理解)的结论。

推荐文章
暂无评论
暂无评论~