Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

物理传热启发的视觉表征模型vHeat来了,尝试突破注意力机制,兼具低复杂度、全局感受野

AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

本文作者为VMamba的原班人马,其中第一作者王兆植是中国科学院大学和鹏城实验室的2022级联合培养博士生,共同一作刘悦是中国科学院大学2021级直博生。他们的主要研究方向是视觉模型设计和自监督学习

如何突破 Transformer 的 Attention 机制?中国科学院大学与鹏城国家实验室提出基于热传导的视觉表征模型 vHeat。将图片特征块视为热源,并通过预测热传导率、以物理学热传导原理提取图像特征。相比于基于Attention机制的视觉模型, vHeat 同时兼顾了:计算复杂度(1.5次方)、全局感受野、物理可解释性。

vHeat-base 模型在高分辨率图像输入时,throughput、GPU 显存占用、flops 分别是 Swin-base 模型的3倍、1/4、3/4,在图像分类目标检测、语义/实例分割等基础下游任务上达到了先进的性能表现。

图片

  • 论文地址: https://arxiv.org/pdf/2405.16555

  • 代码地址: https://github.com/MzeroMiko/vHeat

  • 论文标题:vHeat: Building Vision Models upon Heat Conduction

Overview

CNN 和视觉 Transformer(ViT)是当前最主流的两类基础视觉模型。然而,CNN的性能表现受限于局部感受野和固定的卷积核算子。ViT 具有全局依赖关系的表征能力,然而代价是高昂的二次方级别计算复杂度。我们认为 CNN 和 ViT 的卷积算子和自注意力算子都是特征内部的像素传播过程,分别是一种信息传递的形式,这也让我们联想到了物理领域的热传导。于是我们根据热传导方程,将视觉语义的空间传播和物理热传导建立联系,提出了一种 1.5 次方计算复杂度的视觉热传导算子(Heat Conduction Operator, HCO),进而设计出了一种兼具低复杂度、全局感受野、物理可解释性的视觉表征模型 vHeat。HCO 与 self-attention 的计算形式和复杂度对比如下图所示。实验证明了 vHeat 在各种视觉任务中表现优秀。例如 vHeat-T 在 ImageNet-1K 上达到 82.2% 的分类准确率,比 Swin-T 高 0.9%,比 Vim-S 高1.7%。性能之外,vHeat 还拥有高推理速度、低 GPU 显存占用和低 FLOPs 这些优点。在输入图像分辨率较高时,base 规模的 vHeat 模型相比于 Swin 达到 3 倍吞吐量、1/4 的GPU显存占用和 3/4 的 FLOPs。

图片

方法介绍

图片表示点图片在 t 时刻下的温度, 物理热传导方程为图片,其中 k>0,表示热扩散率。给定 t=0 时刻下的初始条件图片,该热传导方程可以采用傅里叶变换求得通解,表示如下:

图片

其中图片图片分别表示傅里叶变换和逆傅里叶变换图片 表示频域空间坐标。

我们利用 HCO 来实现视觉语义中的热传导,先将物理热传导方程中的图片扩展为多通道特征图片,将图片视为输入,图片视为输出,HCO 模拟了离散化形式的热传导通解,如下公式所示:

图片

其中图片图片分别表示二维离散余弦变换和逆变换,HCO 的结构如下图 (a) 所示。

图片

此外,我们认为不同图像内容应该对应不同的热扩散率,考虑到图片的输出在频域中,我们根据频率值来决定热扩散率,图片。由于频域中不同位置表示了不同的频率值,我们提出了频率值编码(Frequency Value Embeddings,  FVEs)来表示频率值信息,与 ViT 中的绝对位置编码的实现和作用类似,并用 FVEs 对热扩散率 k 进行预测,使得 HCO 可以进行非均匀、自适应的传导,如下图所示。

图片

vHeat 采用多层级的结构实现,如下图所示,整体框架与主流的视觉模型类似,其中的 HCO layer 如图 2 (b) 所示。

图片

实验结果

ImageNet分类

图片

通过对比实验结果不难看出,在相似的参数量和 FLOPs 下:

  1. vHeat-T 取得了 82.2% 的性能,超过 DeiT-S 达 2.4%、Vim-S 达 1.7%、Swin-T 达 0.9%。
  2. vHeat-S 取得了 83.6% 的性能,超过 Swin-S 达 0.6%、ConvNeXt-S 达 0.5%。
  3. vHeat-B 取得了 83.9% 的性能,超过 DeiT-B 达 2.1%、Swin-B 达 0.4%。

同时,由于 vHeat 的 O (N^1.5) 低复杂度和可并行计算性,推理吞吐量相比于 ViTs、SSM 模型有明显的优势,例如 vHeat-T 的推理吞吐量为 1514 img/s,比 Swin-T 高 22%,比 Vim-S 高 87%,也比 ConvNeXt-T 高 26%,同时拥有更好的性能。

下游任务

图片

在 COCO 数据集上, vHeat 也拥有性能优势:在 fine-tune 12 epochs 的情况下,vHeat-T/S/B 分别达到 45.1/46.8/47.7 mAP,超过了 Swin-T/S/B 达 2.4/2.0/0.8 mAP,超过 ConvNeXt-T/S/B 达 0.9/1.4/0.7 mAP。在 ADE20K 数据集上,vHeat-T/S/B 分别达到 46.9/49.0/49.6 mIoU,相比于 Swin 和 ConvNeXt 依然拥有更好的性能表现。这些结果验证了 vHeat 在视觉下游实验中完全 work,展示出了能平替主流基础视觉模型的潜力。

分析实验

有效感受野

图片

vHeat 拥有全局的有效感受野,可视化对比的这些主流模型中只有 DeiT 和 HiViT 也具备这个特性。但是值得注意的是,DeiT 和 HiViT 的代价是平方级的复杂度,而 vHeat 是 1.5 次方级的复杂度。

计算代价

图片

上图从左到右分别为 vHeat-B 与其他 base 规模下的 ViT-based 模型的推理吞吐量 / GPU 显存占用 / 计算量 FLOPs 对比。可以明显看出,由于 O (N^1.5) 的计算复杂度,vHeat 相比于对比的模型有更快的推理速度、更低的显存占用以及更少的 FLOPs,并且在图像分辨率越大时,优势会更为明显。在输入图像为 768*768 分辨率时,vHeat-B 的推理吞吐量为 Swin-B 的 3 倍左右,GPU 显存占用比 Swin-B 低 74%,FLOPs 比 Swin-B 低 28%。vHeat 与 ViT-based 模型的计算代价对比,展示出其处理高分辨率图像的优秀潜质。
产业vHeat视觉表征模型
相关数据
自注意力技术

自注意力(Self-attention),有时也称为内部注意力,它是一种涉及单序列不同位置的注意力机制,并能计算序列的表征。自注意力在多种任务中都有非常成功的应用,例如阅读理解、摘要概括、文字蕴含和语句表征等。自注意力这种在序列内部执行 Attention 的方法可以视为搜索序列内部的隐藏关系,这种内部关系对于翻译以及序列任务的性能非常重要。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

离散余弦变换技术

离散余弦变换(英语:discrete cosine transform, DCT)是与傅里叶变换相关的一种变换,类似于离散傅里叶变换,但是只使用实数。离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数),在有些变形里面需要将输入或者输出的位置移动半个单位(DCT有8种标准类型,其中4种是常见的)。

傅里叶变换技术

傅里叶变换(法语:Transformation de Fourier、英语:Fourier transform)是一种线性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

图像分类技术

图像分类,根据各自在图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法。它利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,以代替人的视觉判读。

实例分割技术

实例分割是检测和描绘出现在图像中的每个不同目标物体的任务。

机器之心机构

机器之心,成立于2014年,是国内最具影响力、最专业、唯一用于国际品牌的人工智能信息服务与产业服务平台。目前机器之心已经建立起涵盖媒体、数据、活动、研究及咨询、线下物理空间于一体的业务体系,为各类人工智能从业者提供综合信息服务和产业服务。

https://www.jiqizhixin.com/
目标检测技术

一般目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置,这是计算机视觉领域最基本和最有挑战性的问题之一。近些年兴起的深度学习技术是一种可从数据中直接学习特征表示的强大方法,并已经为一般目标检测领域带来了显著的突破性进展。

感受野技术

一个感觉神经元的感受野是指这个位置里适当的刺激能够引起该神经元反应的区域。感受野一词主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。

自监督学习技术

一个例子中的内容特别多,而用一个例子做一个任务,就等于把其他的内容浪费了,因此我们需要从一个样本中找出多个任务。比如说遮挡图片的一个特定部分,用没遮挡部分来猜遮挡的部分是一个任务。那么通过遮挡不同的部分,就可以用一个样本完成不同任务。Yann Lecun描述的这个方法被业界称作「自监督学习」

推荐文章
暂无评论
暂无评论~