Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

拿纱布、抓针头,英伟达与多所高校合作,开发手术机器人

图片
编辑 | X

英伟达(NVIDIA)正与学术研究人员合作,研究手术机器人。

NVIDIA 联合多伦多大学、加州大学伯克利分校、苏黎世联邦理工学院和佐治亚理工学院的研究人员开发了 ORBIT-Surgical,一个训练机器人的模拟框架,可以提高手术团队的技能,同时减少外科医生的认知负担。

受腹腔镜手术(又称微创手术)训练课程的启发,它支持十多种操作,比如抓住像针头这样的小物体,从一只手臂传递到另一只手臂,并高精度地放置它们。

基于物理的框架是使用 NVIDIA Isaac Sim 构建的,这是一个用于设计、训练和测试基于 AI 的机器人的机器人模拟平台。

研究人员在 NVIDIA GPU 上训练强化学习模仿学习算法,并使用 NVIDIA Omniverse——一个用于开发和部署基于通用场景描述 (OpenUSD) 的高级 3D 应用程序和管道的平台,来实现照片级真实感渲染。

ORBIT-Surgical 将在 IEEE 国际机器人与自动化会议 (ICRA) 2024 上发表。

图片

GitHub 开源代码:https://orbit-surgical.github.io/
论文地址:https://arxiv.org/abs/2404.16027

在下面的视频中,ORBIT-Surgical 研究团队演示了如何在模拟中训练数字孪生转移到实验室环境中的物理机器人。

ORBIT-Surgical 基于 Isaac Orbit,这是一个基于 Isaac Sim 构建的机器人学习模块化框架。Orbit 支持各种强化学习模仿学习库,其中人工智能代理经过训练可以模仿真实的专家示例。

该手术框架使开发人员能够训练达芬奇研究套件(da Vinci Research Kit,dVRK)等机器人,使用在 NVIDIA RTX GPU 上运行的强化学习模仿学习框架来操纵刚性和软物体。

ORBIT-Surgical 引入了十多项外科训练基准任务,包括单手任务,例如拿起一块纱布、将分流器插入血管或将缝合针举到特定位置。它还包括双手任务,例如将针从一只手臂递到另一只手臂,将螺纹针穿过环形杆,以及将两只手臂伸到特定位置,同时避开障碍物。

ORBIT-Surgical 的基准测试之一是插入分流器( 左图为现实世界的机器人,右图为模拟图。) 

通过开发利用 GPU 加速和并行化的手术模拟器,该团队能够将机器人的学习速度比现有手术框架提高一个数量级。他们发现,经过训练,机器人数字孪生可以在单个 NVIDIA RTX GPU 上在两小时内完成插入分流器和提起缝合针等任务。

借助 Omniverse 渲染实现的视觉真实感,ORBIT-Surgical 还允许研究人员生成高保真合成数据,这有助于训练 AI 模型执行感知任务,例如在手术室捕获的真实视频中分割手术工具。

该团队的概念验证表明,将模拟和真实数据相结合显著提高了人工智能模型从图像中分割手术针的准确性,有助于减少训练此类模型时对大型、昂贵的现实数据集的需求。

参考内容:https://blogs.nvidia.com/blog/orbit-surgical-robotics-research-icra/

产业
相关数据
感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

模仿学习技术

模仿学习(Imitation Learning)背后的原理是是通过隐含地给学习器关于这个世界的先验信息,就能执行、学习人类行为。在模仿学习任务中,智能体(agent)为了学习到策略从而尽可能像人类专家那样执行一种行为,它会寻找一种最佳的方式来使用由该专家示范的训练集(输入-输出对)。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

数字孪生技术

数字孪生(*Digital twin*)指可用于各种目的物理资产(物理孪生,physical twin)、过程、人员、场所、系统和设备的数字副本。

推荐文章
暂无评论
暂无评论~