Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

模型被投毒攻击,如今有了新的安全手段,还被AI顶刊接收

深度学习时代,联邦学习(FL)提供了一种分布式的协作学习的方法,允许多机构数据所有者或客户在不泄漏数据隐私的情况下协作训练机器学习模型。然而,大多数现有的 FL 方法依赖于集中式服务器进行全局模型聚合,从而导致单点故障。这使得系统在与不诚实的客户打交道时容易受到恶意攻击。本文中,FLock 系统采用了点对点投票机制和奖励与削减机制,这些机制由链上智能合约提供支持,以检测和阻止恶意行为。FLock 理论和实证分析都证明了所提出方法的有效性,表明该框架对于恶意客户端行为具有鲁棒性。

现今,机器学习(ML),更具体地说,深度学习已经改变了从金融到医疗等广泛的行业。在当前的 ML 范式中,训练数据首先被收集和策划,然后通过最小化训练数据上的某些损失标准来优化 ML 模型。学习环境中的一个共同基本假设是训练数据可以立即访问或轻松地跨计算节点分发,即数据是「集中式」的。

然而,在一个拥有多个「客户端」(即数据持有者)的系统中,为了确保数据集中化,客户端必须将本地数据上传到一个集中设备(例如中心服务器)以进行上述的集中式训练。尽管集中式训练在各种深度学习应用中取得了成功,但对数据隐私和安全的担忧日益增长,特别是当客户端持有的本地数据是私有的或包含敏感信息时。

联邦学习(FL)可以解决训练数据隐私的问题。在一个典型的 FL 系统中,一个中心服务器负责聚合和同步模型权重,而一组客户端操纵多站点数据。这促进了数据治理,因为客户端仅与中心服务器交换模型权重或梯度,而不是将本地数据上传到中心服务器,并且已经使 FL 成为利用多站点数据同时保护隐私的标准化解决方案。

然而,现有的 FL 大多不能保证来自客户端的上传模型更新的质量。例如,我们可以将恶意行为定义为通过投毒攻击故意降低全局模型学习性能(例如准确性和收敛性)的行为。攻击者可以通过操纵客户端破坏 FL 系统,而不是黑进中心服务器。这项工作专注于防御客户端投毒攻击。

一种解决方案是将 FL 与如全同态加密(FHE)和安全多方计算(SMPC)等复杂的密码协议相结合,以减轻客户端的恶意行为。然而,采用这些复杂的密码协议为 FL 参与者引入了显著的计算开销,从而损害了系统性能。

FLock.io 公司及其合作研究者们(上上海人工智能实验室 Nanqing Dong 博士、帝国理工大学 Zhipeng Wang 博士、帝国理工大学 William Knoettenbelt 教授、及卡内基梅隆大学 Eric Xing 教授)通过提出一种基于区块链和分布式账本技术的安全可靠的 FL 系统框架来解决传统联邦学习(FL)依赖于集中式服务器进行全局模型聚合,从而导致单点故障这个问题,并将此系统设计命名为 FLock。

在该研究中,团队借助区块链、智能合约和代币经济学设计一种可以抵抗恶意节点攻击(尤其是投毒攻击)的 FL 框架。该工作的成果近期被 IEEE Transactions on Artificial Intelligence (TAI) 接收。

图片

  • 论文链接:https://ieeexplore.ieee.org/document/10471193

  • 论文标题:Defending Against Poisoning Attacks in Federated Learning with Blockchain

方法介绍

灵感来源

FLock 的机制设计受到了证明权益(PoS)区块链共识机制和桌面游戏《The Resistance》(一种角色扮演类游戏,该游戏的一个变种叫阿瓦隆)的启发。

PoS 要求参与者通过奖励诚实行为并通过削减权益来惩罚不诚实行为,鼓励诚实行为。例如,在以太坊上,希望参与验证区块并识别链头的节点运营商将以太币存入以太坊上的智能合约中。某位验证者从总验证者池中随机选择作为区块提出者提出新区块, 其他验证者则检查新区块并证明它们是否有效。如果验证者未能完成其中相应的任务,他们就即会受到惩罚或削减;诚实节点则会收到奖励。

《The Resistance》游戏则通过投票机制,每轮游戏中玩家独立推理并投票,从而实现全局共识。《The Resistance》有两个不匹配的竞争方,其中较大的一方被称为抵抗力量,另一方被称为间谍。在《The Resistance》中,有一个投票机制,在每一轮中,每个玩家进行独立推理并为一个玩家投票,得票最多的玩家将被视为「间谍」并被踢出游戏。抵抗力量的目标是投票淘汰所有间谍,而间谍的目标是冒充抵抗力量并生存到最后。

整体设计

基于 PoS 和《The Resistance》的启发,FLock 提出了一个新颖的基于区块链的 FL 全局聚合的多数投票机制,其中每个 FL 参与客户端独立验证聚合本地更新的质量,并为全局更新的接受度投票。参与者需要抵押资产或代币。

每一轮 FL 训练中,参与者将被随机选中参与两种类型的行动,提议(上传本地更新)和投票。聚合者(可以是区块链矿工或者其他 FL 链下聚合者)将对收到的本地更新进行聚合从而得到全局聚合。如果大多数投票接受全局聚合,提议者将退还其抵押的代币,而投票接受的投票者不仅会退还,而且还会获得投票拒绝的投票者的抵押代币的奖励,反之亦然。

基于股权基础聚合机制的整体设计如下图所示。

图片

算法细节如下所示:

  • 在每一轮中,从参与的客户端中随机选择提议者来进行本地训练并将本地更新上传到区块链

  • 随机选择的投票者将下载聚合的本地更新,执行本地验证,并投票接受或拒绝。

图片

  • 如果大多数投票者投票「接受」,那么全局模型将被更新,提案者和投票「接受」的投票者将获得奖励。

图片

  • 相反,如果大多数投票者投票「拒绝」,则全局模型将不会更新,提案者和投票「接受」的投票者的抵押代币将被削减。

图片

图片

该算法的最终目标是让恶意参与者的长期平均收益为负值,进而使其抵押代币削减到低于某个允许阈值,从而被提出 FL 系统。

实验结果

FLock 的实验在 Kaggle Lending Club 数据集和 ChestX-ray14 数据集上显示分析了该方案的可行性和鲁棒性,包括:

与传统 FL 相比,FLock 抵抗恶意节点的能力:如下图所示,FLock (即 FedAVG w/block)在有恶意节点的情况下仍然保持了稳健的性能。

图片

恶意参与者的抵押代币变化:同理论分析一致,恶意参与者的平均代币随着训练轮数 / 时间的增加而减少。并且,如果惩罚力度增大(即 \gamma 增大),则恶意参与者的平均代币的减少速度将会增大。

图片

诚实参与者的抵押代币变化:相对应的,诚实参与者的平均代币随着训练轮数 / 时间的增加而增加。并且,如果惩罚力度增大大(即 \gamma 增大),则诚实参与者的平均代币的增加速度将会增大。

图片

恶意参与者的存活时间:恶意参与者的存活时间将会随着惩罚力度增大而缩短。

图片

诚实参与者的存活时间:FLock 的实验结果也指出,在恶意节点占比较多的时候(即 \eta 增大时),较大的惩罚力度也会造成部分诚实节点的存活时间缩短(因为每一轮的提议者和投票者是随机选取的)。因此,在实际应用中,要结合考虑恶意节点占比(即 \eta)设置惩罚力度(即 \gamma)。

图片

总结与展望

FLock 提出了一种基于区块链、智能合约和代币经济学的可以抵恶意节点攻击的 FL 框架。该方案论证了区块链和 FL 结合的可行性,证明了区块链不仅可以在去中心化和激励参与者在金融和医学等领域的现实世界中的 FL 应用中发挥重要作用,而且还可以用来防御投毒攻击。

FLock 的方案已被进一步落地实现:https://www.flock.io/

团队将于近期推出首个版本的去中心化 AI 模型训练平台,基建包括了激励体系,联邦学习和一键微调脚本。平台将主要面向两类人群:Developer:欢迎各位 Kaggle 及 Huggingface 玩家早期入驻,完成模型训练与验证以获得激励;Task Creator:有模型训练或者微调需求的公司或者团队可以在FLock平台上发布任务,FLock提供基建组织开发者,从而省去组建AI团队,寻找用户基础与数据的复杂过程,并简化工作流。有兴趣请邮件 FLock 团队:hello@flock.io

研究方面,FLock 也正在探索更加多维度的 decentralized AI 安全解决方案,如借助零知识证明解决 FL 中心节点作恶的问题。

研究地址:https://arxiv.org/pdf/2310.02554.pdf

Let's wait for more decentralized AI solutions from FLock!

与此同时,FLock.io 公司致力于将此技术投入到工程实践,也于最近官宣种子轮六百万美元的融资,由 Lightspeed Faction(光速美国)领投。

工程FLock联邦学习
相关数据
区块链技术

区块链是用分布式数据库识别、传播和记载信息的智能化对等网络, 也称为价值互联网。 中本聪在2008年,于《比特币白皮书》中提出“区块链”概念,并在2009年创立了比特币社会网络,开发出第一个区块,即“创世区块”。

深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

收敛技术

在数学,计算机科学和逻辑学中,收敛指的是不同的变换序列在有限的时间内达到一个结论(变换终止),并且得出的结论是独立于达到它的路径(他们是融合的)。 通俗来说,收敛通常是指在训练期间达到的一种状态,即经过一定次数的迭代之后,训练损失和验证损失在每次迭代中的变化都非常小或根本没有变化。也就是说,如果采用当前数据进行额外的训练将无法改进模型,模型即达到收敛状态。在深度学习中,损失值有时会在最终下降之前的多次迭代中保持不变或几乎保持不变,暂时形成收敛的假象。

以太坊技术

以太坊(英文Ethereum)是一个开源的有智能合约功能的公共区块链平台,通过其专用加密货币以太币(Ether)提供去中心化的虚拟机(“以太虚拟机” Ethereum Virtual Machine)来处理点对点合约。 以太坊的概念首次在2013至2014年间由程序员Vitalik Buterin受比特币启发后提出,大意为“下一代加密货币与去中心化应用平台”,在2014年通过ICO众筹开始得以发展。

联邦学习技术

如何在保护数据隐私、满足合法合规要求的前提下继续进行机器学习,这部分研究被称为「联邦学习」(Federated Learning)。

Creator机构

Creator是设计师,是食品革命家,也是机器人手。它是由具有数十年机器人技术和餐厅经验的美食爱好者和工程师组成的集合。该公司解决了一些最复杂的数学和工程难题,以带来可以触及数十亿人的世界级技术。

官网,http://creator.rest/
推荐文章
暂无评论
暂无评论~