Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

CVPR 2024 | 面部+肢体动画,一个框架搞定从音频生成数字人表情与动作

AI 数字人面部与肢体的驱动算法作为数字人研发的重要环节,可以大幅度降低 VR Chat、虚拟直播和游戏 NPC 等领域中的驱动成本。

近年来,基于语音生成面部、肢体和手部的动作的各类独立基线模型已经逐渐成熟。然而,直接将不同模型的动画结果混合会导致最终全身整体的动画不协调。研究者逐渐考虑使用统一的框架来同时生成面部表情和肢体动作。

然而,尽管研究社区在面部的表情和肢体的动作上分别存在统一的数据标准,已有的基线模型仅在独立的数据格式上进行训练和评估,比如 FLAME (面部) 和 AMASS (肢体)。社区仍然缺少面向全身的,格式统一的训练数据和基线模型。

针对此问题,东京大学,清华大学,德国马普所的研究者联合提出了 EMAGE,一个从音频和动作的掩码中生成人体全身动作的框架,包括面部、局部肢体、手部和全局运动。

图片

  • 论文地址:https://arxiv.org/abs/2401.00374

  • 项目主页:https://pantomatrix.github.io/EMAGE/

  • 视频结果:https://www.youtube.com/watch?v=T0OYPvViFGE

  • hugging face space 链接:https://huggingface.co/spaces/H-Liu1997/EMAGE

EMAGE 研究论文包含 BEAT2 与 EMAGE 两部分。用户可以自定义动作的输入,在接受预定义的时序与空间的动作输入方面具有灵活性,最终可生成完整的、与音频相同步的结果,EMAGE 输出全身动作的效果属于业界 SOTA。

  • BEAT2: 即 BEAT-SMPLX-FLAME,是语音与基于网格的动作数据的全身数据集,共有 60 小时的数据。BEAT2 将 SMPLX 的肢体与 FLAME 的面部参数相结合,并进一步解决了头部、颈部和手指等运动的模型问题,为研究社区提供了一个标准化且高质量的 3D 动捕数据集。

图片

图片

左:将精调后的 SMPLX 肢体参数结果(Refined Moshed)与 BEAT 的原始骨架数据(BEAT)、使用 AutoRegPro 的重定向数据(Retargeted)以及 Mosh++ 的初始结果(Moshed)进行比较,精调的结果拥有正确的颈部弯曲、适当的头颈形状比例和详细的手指弯曲。

右:将原始 BEAT 中的混合表情权重可视化,与 ARKit 的基础脸部模板(BEAT)、基于线性 Wrapped 的方法(Wrapped Optimum)以及人工 PCA 映射 FACs 的表情优化(Handcraft Optimum)进行比较。最终的人工映射优化基于 FLAME 混合表情,实现了准确的唇动细节和自然对话时的口型。

  • EMAGE:在训练过程中利用了肢体动作掩码的先验知识来提高推理性能。EMAGE 使用了一个音频与动作掩码的转换器,有效提高了音频生成动作和动作掩码下的动作重建的联合训练的效率,从而有效地将音频和肢体动作的提示帧编码进网络。动作掩码的肢体提示帧分别被用于生成面部和肢体动作。此外,EMAGE 自适应地合并了音频的节奏和内容的语音特征,并利用身体各个部位 (共计四种) 的组合式 VQ- VAEs 来增强结果的真实性和多样性。

下图给出了 EMAGE 生成肢体动画的例子:

图片

从上到下依次为:真实数据、不使用肢体提示帧生成的数据、使用肢体提示帧生成的数据、肢体提示帧的可视化:

图片

EMAGE 可以生成多样化、具有语义和与音频同步的肢体动作,例如,对于 “spare time” 这个提示词,可以同时举起双手,而对于 “hike in nature” 则可以采取放松的动作。

此外,如第三行和第四行所示,EMAGE 可以灵活地接受非音频同步的肢体提示帧,基于任意帧或关节,以此明确引导生成的动作。例如,重复类似的动作比如举起双手,或是改变行走方向等。注:此图中,第三列的生成结果的关节提示(灰色网格),与第四行的肢体提示帧的关节(绿色网格)并不一致。

下图是 EMAGE 生成面部动画的结果:

图片

                             EMAGE 生成的面部运动与基线模型的对比。

分别是脸部单独生成的方法如 faceformer 与 codetalker、全身整体动作生成方法如 Habibie et al. 和 Talkshow。在 BEAT2 数据集中,因为 codetalker 具有离散的面部先验知识,所以即使 codetalker 的 MSE(均方误差)更高,即更偏离真实数据,但主观结果更好。而 EMAGE 则利用离散的面部先验知识和动作掩码的肢体提示帧,实现了更精准的唇动性能。

模型介绍

图片

EMAGE 是一个支持用户自定义输入,带有动作掩码与音频输入的全身动作建模框架,使用新提出的数据集 BEAT2(BEAT-SMPLX-FLAME),生成面部表情、局部身体动作、手部动作和全局平移运动时,是以音频与动作掩码作为基准联合训练。灰色身体部位是用户输入的肢体提示帧,蓝色表示整体的网络输出。

算法细节

图片

EMAGE 采取了两种训练路线:动作掩码重建(MaskedGesture2Gesture,即 MG2G)和使用音频的动作生成(Audio2Gesture,即 A2G)。

  • MG2G:通过基于 Transformer 的动作的时空编码器与基于交叉注意力的动作解码器,来对肢体提示帧进行编码。

  • A2G:利用输入的肢体提示与独立的的音频编码器,对于经过预训练的面部和肢体潜征进行解码。

可切换的交叉注意力层在上述过程中作为关键组件,对于合并肢体提示帧和音频特征起重要作用。此融合使特征被有效地解耦并可以被用于动作的解码。动作潜征被重建之后,EMAGE 使用预训练的 VQ-Decoder 来对于面部和局部肢体运动进行解码。

此外,预训练的全局运动预测器也被用来估计全身的全局平移,使得模型生成逼真并且连贯动作的能力得到加强。

CRA 和 VQ-VAEs 的与训练模型的细节

图片

左图:内容节奏注意力模块 (CRA) 将音频的节奏(初始语音和振幅)与内容(来自文本的预训练词条嵌入)自适应地相融合。这种架构可以让特定帧更有效地基于音频的内容或节奏,生成更加具有语义的动作。

右图:通过对于面部、肢体上半身、手部和肢体下半身的分别重建,来预训练四个组合式 VQ-VAEs 模型,以更加明示地将与音频无关的动作相解耦。

前向传播网络对比

图片

  • 直接融合模块 (a) : 将音频特征与未精调的肢体特征合并,仅基于位置嵌入重组音频特征。

  • 自注意力解码器模块 (b) : 为 MLM 模型中所采用的模块,只限于自回归推理的任务。

  • EMAGE (c) : 融合 (a) 与 (b) 的长处,同时使音频特征融合更有效,且可以自回归解码。

产业AI 数字人EMAGE
相关数据
清华大学机构

清华大学(Tsinghua University),简称“清华”,由中华人民共和国教育部直属,中央直管副部级建制,位列“211工程”、“985工程”、“世界一流大学和一流学科”,入选“基础学科拔尖学生培养试验计划”、“高等学校创新能力提升计划”、“高等学校学科创新引智计划”,为九校联盟、中国大学校长联谊会、东亚研究型大学协会、亚洲大学联盟、环太平洋大学联盟、清华—剑桥—MIT低碳大学联盟成员,被誉为“红色工程师的摇篮”。 清华大学的前身清华学堂始建于1911年,因水木清华而得名,是清政府设立的留美预备学校,其建校的资金源于1908年美国退还的部分庚子赔款。1912年更名为清华学校。1928年更名为国立清华大学。1937年抗日战争全面爆发后南迁长沙,与北京大学、南开大学组建国立长沙临时大学,1938年迁至昆明改名为国立西南联合大学。1946年迁回清华园。1949年中华人民共和国成立,清华大学进入了新的发展阶段。1952年全国高等学校院系调整后成为多科性工业大学。1978年以来逐步恢复和发展为综合性的研究型大学。

http://www.tsinghua.edu.cn/
相关技术
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

自注意力技术

自注意力(Self-attention),有时也称为内部注意力,它是一种涉及单序列不同位置的注意力机制,并能计算序列的表征。自注意力在多种任务中都有非常成功的应用,例如阅读理解、摘要概括、文字蕴含和语句表征等。自注意力这种在序列内部执行 Attention 的方法可以视为搜索序列内部的隐藏关系,这种内部关系对于翻译以及序列任务的性能非常重要。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

先验知识技术

先验(apriori ;也译作 先天)在拉丁文中指“来自先前的东西”,或稍稍引申指“在经验之前”。近代西方传统中,认为先验指无需经验或先于经验获得的知识。先验知识不依赖于经验,比如,数学式子2+2=4;恒真命题“所有的单身汉一定没有结婚”;以及来自纯粹理性的推断“本体论证明”

Audi机构

奥迪是一间德国跨国豪华汽车制造商,主要从事豪华和高性能汽车制造业。总部位于德国巴伐利亚州的英戈尔施塔特。是大众集团的成员。奥迪与德国品牌宝马和梅赛德斯-奔驰一起,是世界上最畅销的豪华汽车品牌之一。

http://www.audi.com/
推荐文章
暂无评论
暂无评论~