Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

ICLR 2024 | 为音视频分离提供新视角,清华大学胡晓林团队推出RTFS-Net

视听语音分离(AVSS)技术旨在通过面部信息从混合信号中分离出目标说话者的声音。这项技术能够应用于智能助手、远程会议和增强现实等应用,改进在嘈杂环境中语音信号质量。

传统的视听语音分离方法依赖于复杂的模型和大量的计算资源,尤其是在嘈杂背景或多说话者场景下,其性能往往受到限制。为了突破这些限制,基于深度学习的方法开始被研究和应用。然而,现有的深度学习方法面临着高计算复杂度和难以泛化到未知环境的挑战。

具体来说,当前视听语音分离方法存在如下问题:

  • 时域方法:可提供高质量的音频分离效果,但由于参数较多,计算复杂度较高,处理速度较慢。

  • 时频域方法:计算效率更高,但与时域方法相比,历来表现不佳。它们面临三个主要挑战:

1. 缺乏时间和频率维度的独立建模。

2. 没有充分利用来自多个感受野的视觉线索来提高模型性能。

3. 对复数特征处理不当,导致丢失关键的振幅和相位信息。

为了克服这些挑战,来自清华大学胡晓林副教授团队的研究者们提出了 RTFS-Net:一种全新的视听语音分离模型。RTFS-Net 通过压缩 - 重建的方式,在提高分离性能的同时,大幅减少了模型的计算复杂度和参数数量。RTFS-Net 是第一个采用少于 100 万个参数的视听语音分离方法,也是第一个时频域多模态分离模型优于所有时域模型的方法。

图片

  • 论文地址:https://arxiv.org/abs/2309.17189

  • 论文主页:https://cslikai.cn/RTFS-Net/AV-Model-Demo.html

  • 代码地址:https://github.com/spkgyk/RTFS-Net(即将发布)

方法简介

RTFS-Net的整体网络架构如下图1所示:

图片

                                图 1. RTFS-Net 的网络框架

其中,RTFS 块(如图 2 所示)对声学维度(时间和频率)进行压缩和独立建模,在创建低复杂度子空间的同时尽量减少信息丢失。具体来说,RTFS 块采用了一种双路径架构,用于在时间和频率两个维度上对音频信号进行有效处理。通过这种方法,RTFS 块能够在减少计算复杂度的同时,保持对音频信号的高度敏感性和准确性。下面是 RTFS 块的具体工作流程:

1. 时间 - 频率压缩:RTFS 块首先对输入的音频特征进行时间和频率维度的压缩。

2. 独立维度建模:在完成压缩后,RTFS 块对时间和频率维度进行独立建模。

3. 维度融合:独立处理时间和频率维度之后,RTFS 块通过一个融合模块将两个维度的信息合并起来。

4. 重构和输出:最后,融合后的特征通过一系列逆卷积层被重构回原始的时间 - 频率空间。

图片

                                    图 2. RTFS 块的网络结构

跨维注意力融合(CAF)模块(如图 3 所示)有效融合音频和视觉信息,增强语音分离效果,计算复杂度仅为之前 SOTA 方法的 1.3%。具体来说,CAF 模块首先使用深度和分组卷积操作生成注意力权重。这些权重根据输入特征的重要性动态调整,使模型能够聚焦于最相关的信息。然后,通过对视觉和听觉特征应用生成的注意力权重,CAF 模块能够在多个维度上聚焦于关键信息。这一步骤涉及到对不同维度的特征进行加权和融合,以产生一个综合的特征表示。除了注意力机制外,CAF 模块还可以采用门控机制来进一步控制不同源特征的融合程度。这种方式可以增强模型的灵活性,允许更精细的信息流控制。

图片

                                   图 3. CAF 融合模块的结构示意图

频谱源分离 ( S^3 ) 块的设计理念在于利用复数表示的频谱信息,从混合音频中有效提取目标说话者的语音特征。这种方法充分利用了音频信号的相位和幅度信息,提高了源分离的准确性和效率。并使用复数网络使得 S^3 块在分离目标说话者的语音时能够更准确地处理信号,尤其是在保留细节和减少伪影方面表现出色,如下所示。同样地,S^3 块的设计允许容易地集成到不同的音频处理框架中,适用于多种源分离任务,并具有良好的泛化能力。

图片

实验结果

分离效果

在三个基准多模态语音分离数据集(LRS2,LRS3 和 VoxCeleb2)上,如下所示,RTFS-Net 在大幅降低模型参数和计算复杂度的同时,接近或超越了当前最先进的性能。通过不同数量的 RTFS 块(4, 6, 12 块)的变体展示了在效率和性能之间的权衡,其中 RTFS-Net-6 提供了性能与效率的良好平衡。RTFS-Net-12 在所有测试的数据集上均表现最佳,证明了时频域方法在处理复杂音视频同步分离任务中的优势。

图片

实际效果

混合视频:女性说话人音频: 男性说话人音频: 

总结

随着大模型技术的不断发展,视听语音分离领域也在追求大模型来提升分离质量。然而,这对于端上设备并不是可行的。RTFS-Net 在保持显著降低的计算复杂度和参数数量的同时,还实现了显著的性能提升。这表明,提高 AVSS 性能并不一定需要更大的模型,而是需要创新、高效的架构,以更好地捕捉音频和视觉模式之间错综复杂的相互作用。

产业RTFS-Net清华大学视听语音分离
相关数据
清华大学机构

清华大学(Tsinghua University),简称“清华”,由中华人民共和国教育部直属,中央直管副部级建制,位列“211工程”、“985工程”、“世界一流大学和一流学科”,入选“基础学科拔尖学生培养试验计划”、“高等学校创新能力提升计划”、“高等学校学科创新引智计划”,为九校联盟、中国大学校长联谊会、东亚研究型大学协会、亚洲大学联盟、环太平洋大学联盟、清华—剑桥—MIT低碳大学联盟成员,被誉为“红色工程师的摇篮”。 清华大学的前身清华学堂始建于1911年,因水木清华而得名,是清政府设立的留美预备学校,其建校的资金源于1908年美国退还的部分庚子赔款。1912年更名为清华学校。1928年更名为国立清华大学。1937年抗日战争全面爆发后南迁长沙,与北京大学、南开大学组建国立长沙临时大学,1938年迁至昆明改名为国立西南联合大学。1946年迁回清华园。1949年中华人民共和国成立,清华大学进入了新的发展阶段。1952年全国高等学校院系调整后成为多科性工业大学。1978年以来逐步恢复和发展为综合性的研究型大学。

http://www.tsinghua.edu.cn/
相关技术
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

增强现实技术

增强现实,是指透过摄影机影像的位置及角度精算并加上图像分析技术,让屏幕上的虚拟世界能够与现实世界场景进行结合与互动的技术。这种技术于1990年提出。随着随身电子产品运算能力的提升,增强现实的用途也越来越广。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

重构技术

代码重构(英语:Code refactoring)指对软件代码做任何更动以增加可读性或者简化结构而不影响输出结果。 软件重构需要借助工具完成,重构工具能够修改代码同时修改所有引用该代码的地方。在极限编程的方法学中,重构需要单元测试来支持。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

感受野技术

一个感觉神经元的感受野是指这个位置里适当的刺激能够引起该神经元反应的区域。感受野一词主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。

语音分离技术

语音分离是指将不同说话者的声音分离或将噪声(背景干扰)与原始音频信号分离。

推荐文章
暂无评论
暂无评论~