Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

盘点如何用AI做动画,还有各种工具等你取用

图像生成视频生成、整合语音合成的人脸动画、生成三维的人物运动以及 LLM 驱动的工具…… 一切都在这篇文章中。


生成式 AI 已经成为互联网的一个重要内容来源,现在你能看到 AI 生成的文本、代码、音频、图像以及视频和动画。今天我们要介绍的文章来自立陶宛博主和动画师 aulerius,其中按层级介绍和分类了动画领域使用的生成式 AI 技术,包括简要介绍、示例、优缺点以及相关工具。

他写道:「作为一位动画制作者,我希望一年前就有这样一份资源,那时候我只能在混乱的互联网上自行寻找可能性和不断出现的进展。」

本文的目标读者是任何对这一领域感兴趣的人,尤其是不知如何应对 AI 领域新技术发展的动画师和创意人士。另需说明,视频风格化虽然也是相关技术,但本文基本不会涉及这方面。

图片

                               本文的文章结构。

图像生成

图像生成技术是指使用 AI 模型生成图像的技术,这些 AI 模型的训练使用了静态图像。

将生成的图像用作素材

将任意 AI 应用生成的静态图像用作 2D 剪贴画、数字处理、拼贴等传统工作流程中的素材,或者用作其它 AI 工具的资源,比如提供给图像转视频(image2video)工具来生成视频。除了作为图像和素材来源,这类技术还需依赖剪切和图像编辑等一些常用技能。
                              短片《Planets and Robots》中使用了数字剪贴画来将生成的 AI 图像动画化,其中的配音也是使用 LLM 基于脚本生成的。

优点:

  • 现有动画师就很容易上手使用
  • 可用于生成背景图

缺点:

  • 生成结果没有多少「新意」
  • 需要动画师协调处理素材和动画

免费工具(任何生成图像模型或应用):

  • Stable Diffusion(SD,运行在本地计算机上)或这些在线应用:Craiyon
  • Invokeai (使用了 SD)
  • Enfugue (使用了 SD)
  • SkyBox AI—— 能生成适用于 VR 的 360 度场景图

插件和附加组件:

  • 在 Blender 中使用的 ComfyUI 节点
  • Krita 上的 Stable Diffusion
  • Krita 上的 ComfyUI—— 界面简单易用,对艺术家友好

此外,Hugging face space 上还有一些免费的演示:https://huggingface.co/spaces

付费工具(任何生成图像模型或应用):

  • MidJourney
  • Runway
  • DALL・E 2
  • Adobe 的 FireFly

注:动画制作使用的工具包括 After Effects、Moho、Blender……
 
逐帧生成图像

这类技术是以一种相当程度上立足动画根源的精神来使用生成式扩散图像模型,其是以逐帧方式生成动作序列,就像是传统动画制作的绘制再拍摄过程。其中的一大关键是这些模型在生成每张图像时没有时间或运动的概念,而是通过某种机制或各种应用或扩展来帮助得到某种程度上的动画,从而实现所谓的「时间一致性(temporal consistency)」。

这些技术得到的动画往往会出现闪烁现象。尽管许多使用这些工具的用户会努力清理这些闪烁,但动画师却会把这视为一种艺术形式,称为 boiling。

这方面最常用的是 Stable Diffusion 等开源模型以及基于它们构建的工具。用户可以使用公开的参数来配置它们,还可以将它们运行在本地计算机上。相较之下,MidJourney 工具的模型没有公开,而且主要是为图像生成设计的,因此无法用来生成逐帧动画。
动画也可能使用 Stable WarpFusion 来制作,这其中涉及到图像转图像的工作流程,通过一些扭变(置换)将底层的视频输入变成动画。视频作者:Sagans。

用逐帧图像来制作动画通常需要混合使用以下工具:

一步到位的工具(文本转图像)

有一些新技术支持直接通过文本 prompt 和参数调配来生成动画:

  • 参数插值(变形)

在每张生成的图像帧上逐渐进行参数插值,以得到过渡动画。这里的参数可能包括任何与模型相关的设定,比如文本 prompt 本身或底层的种子(隐空间游走)。

图片

                           prompt 编辑法,即通过逐渐改变权重来创建动画过渡。这里使用了 Depth ControlNet 来保持手部整体形状的一致性。

  • 图像到图像(I2I)反馈循环

通过图像到图像技术,将每张生成的图像帧作为输入来生成动画的下一帧。这样在其它参数和种子变化时也可以生成看起来相似的帧序列。这个过程通常由 Deforum 中的「去噪强度」或「强度调度」来控制。起始帧可以是已有的图片。

这是大多数使用 Stable Diffusion 的动画实现的一个核心组件,而 Stable Diffusion 是下列许多应用依赖的技术。这种技术很难平衡,并且很大程度上取决于使用的采样器(噪声调度器)。

图片

                                使用一张起始图像,然后使用一个稍有不同的 prompt,使其逐帧变化成其它形态。

  • 2D 或 3D 变换(基于 I2I 循环)

逐渐变换每一帧生成图像,之后再将其作为 I2I 循环的输入。2D 变换对应于简单的平移、旋转和缩放。3D 技术则会想象一个在 3D 空间中移动的虚拟相机,这通常需要估计每帧生成图像的 3D 深度,然后根据想象中的相机运动来进行变形处理。

图片

                               想必你已经看过这种无限放大的动画。它的视觉效果如此之棒,是因为其使用了 SD 来持续构建新细节。
 
  • 实验性、运动合成、混合等技术

运动合成的目标是「想象」后续生成帧之间的运动流,然后使用这个运动流来逐帧执行变形处理,从而基于 I2I 循环注入有机的运动。这通常需要依赖在视频的运动估计(光流)上训练的 AI 模型,只不过其关注的不是后续视频帧,而是后续生成帧(通过 I2I 循环),或是使用某种混合方法。

其它技术还包括图像修复和变形技术搭配使用、采用多个处理步骤或甚至捕获模型训练过程的快照等先进技术。举个例子,Deforum 有很多可供用户调控的地方。

图片

                               使用 SD-CN Animation 制作,其使用了一种在生成帧之间产生幻觉运动的独特方法。起始图像只是作为起点,没有其它用途。

变换型技术(图像到图像):

此外还可以使用某个来源的输入来助力生成的帧和所得的动画结果:

  • 混合(风格化)—— 混合视频源或 / 和按条件处理(ControlNets)

这类方法范围很广,做法是使用输入视频来混合和影响生成的序列。这些输入视频通常分为多个帧,作用通常是风格化现实视频。在现如今的风格化跳舞视频和表演热潮中,这类技术常被用于实现动漫造型和性感体格。但你可以使用任何东西作为输入,比如你自己动画的粗略一帧或任何杂乱抽象的录像。在模仿 pixilation 这种定格动画技术和替换动画技术方面,这类技术有广泛的可能性。

在每一帧,输入帧要么可以直接与生成图像混合,然后再输入回每个 I2I 循环,要么可以采用更高级的设定附加条件的做法,比如 ControlNet。

图片

                          Deforum 搭配 ControlNet 条件化处理的混合模式,左图是原视频。遮掩和背景模糊是分开执行的,与这项技术无关。

  • 光流变形(使用视频输入在 I2I 循环上执行)

「光流」是指视频中估计的运动,可通过每一帧上的运动向量表示,其指示了屏幕空间中每个像素的运动情况。当估计出变形工作流程中的源视频的光流后,就可以根据它对生成的帧执行变形,使得生成的纹理在对象或相机移动时也能「粘黏」在对象上。

图片

Deforum 的混合模式支持这种技术搭配各种设置使用。为了得到闪动更少的结果,也会增加 cadence,使得变形的效果更好。遮掩和背景模糊是分开执行的,与这项技术无关。

  • 3D 衍变

通过变形工作流程完成的条件处理也可能直接关联 3D 数据,这可以跳过一个可能造成模糊的环节,直接在视频帧上完成处理。

举个例子,可以直接通过虚拟 3D 场景提供 openpose 或深度数据,而不是通过视频(或经过 CG 渲染的视频)估计这些数据。这允许采用最模块化和最可控的 3D 原生方法;尤其是组合了有助于时间一致性的方法时,效果更佳。

这可能是现有技术与用于 VFX 的 AI 技术之间最有潜力的交叉领域,如下视频所示:https://youtu.be/lFE8yI4i0Yw?si=-a-GvsaIVPrdaQKm

图片

有一个广泛应用的工具也使用了该技术,其可简化并自动化用 Blender 生成直接适用于 ControlNet 的角色图像的过程。在这个示例中,ControlNet 使用手部骨架来生成 openpose、深度和法线贴图图像,最终得到最右侧的 SD 结果。(openpose 最终被舍弃了,因为事实证明它不适用于只有手部的情况。)

将所有这些技术结合起来,似乎有无尽的参数可以调整动画的生成结果(就像模块化的音频制作)。它要么可以通过关键帧进行「调度」并使用 Parseq 这样的工具绘制图形,要么可以与音频和音乐关联,得到许多随音频变化的动画。只需如此,你就能使用 Stable Diffusion 帮你跳舞了。

优点:

  • 全新且不断演变的美学风格,这是这种媒体形式特有的。
  • 在概念上与传统的动画技术有共同点。
  • 最容易定制化、最实用且易于指导。
  • 模块化、分层的方法。

缺点:

  • 往往会有闪动问题,有时候会显得很混乱。
  • 技术方面要考虑的东西很多,难以平衡考虑,要想成为高手必须经历陡峭的学习曲线
  • 如果没有性能卓越的本地硬件(英伟达 GPU),就会很不方便。

免费工具:

可在 A1111 webui 中使用的工具:

  • 用于参数插值动画(travel)的小脚本:步骤(https://github.com/vladmandic/sd-extension-steps-animation) 、prompt(https://github.com/Kahsolt/stable-diffusion-webui-prompt-travel )、种子(https://github.com/yownas/seed_travel)。
  • Deforum—— 能够满足各种动画 SD 需求的最佳工房,整合了上面大多数技术。
  • Parseq—— 用于 Deforum 的常用视觉参数排序工具。
  • Deforum timeline helper—— 另一款参数可视化和调度工具。
  • Deforumation—— 用于实时控制 Deforum 参数的 GUI,支持反应性调整和控制。
  • TemporalKit—— 采用了 EBsynth 的一些原则,可与 SD 搭配使用实现一致的视频风格化。
  • SD-CN Animation—— 这多少还是个实验性工具,支持一些混合风格化工作流程,也支持有趣的光流运动合成(这会导致运动抖动)。
  • TemporalNet——ControlNet 模型可以用在 Deforum 等其它工作流程中,目标是提升时间一致性。Python 笔记本(需要在 Google Colab 或 Jupyter 上运行)。
  • Stable WarpFusion —— 实验性的代码工具包,目标是执行高级的视频风格化和动画。与 Deforum 有很多一样的功能。

插件和附加组件:

  • 用于 Blender 的 Dream Textures
  • Stabiliy AI 的 Blender 插件
  • 看起来像用于 Blender 的 Openpose 的角色骨架 —— 可在 Blender 之外使用 ControlNet
  • 用于虚幻引擎 5 的 Unreal Diffusion
  • 用于 After Effects 的 After-Diffusion(目前还在开发中)
  • 用于 TouchDesigner 的 A1111 或 ComfyUI API—— 如果你知道如何操作,那么这可用于执行动画等各种任务

付费工具:

(通常也依赖于 SD,但运行在「云」上,用起来也更简单):

  • Stability AI 的动画 API
  • Kaiber 的 Flipbook 模式 —— 按照描述,基于 Deforum 代码

插件和附加组件:

  • 用于 After Effects 的 Diffusae

市面上还有许多应用和工具,但如果是付费工具,多半是基于开源的 Deforum 代码。

注:最好的情况是你有足够的优良硬件(即 GPU)在本地运行这些工具。如果没有,你也可以尝试运行在远程计算机上的、功能有限的免费服务,比如 Google Colab。不过,Google Colab 上的笔记本也可以运行在本地硬件上。

视频生成技术

这类技术使用在运动视频上训练的视频生成 AI 模型,另外可以在神经网络层面上使用时间压缩来增强。

目前,这些模型有一个共同特征是它们仅能处理时间很短的视频片段(几秒),并受到 GPU 上可用视频内存的限制。但是,这方面的发展速度很快,并且可以用一些方法将多个生成结果拼接成更长的视频。

视频生成模型

这是指使用从头构建和训练的模型来处理视频。

现今的这类模型得到的结果往往晃动很大、有明显的 AI 痕迹、显得古怪。就像是很久之前生成图像的 AI 模型一样。这个领域的发展落后一些,但进展很快,我个人认为在静态图像生成上取得的进展并不会同等比例地在视频生成方面重现,因为视频生成的难度要大得多。
                                Paul Trillo 使用 Runway 的 Gen-2,仅通过图像和文本 prompt 让 AI 生成的视频。

我认为在这方面,动画和传统电影之间的界限很模糊。只要其结果还与现实有差异,那么我们就可以在一定程度上把它们看作是动画和视频艺术的一种怪异新流派。就目前而言,我认为大家还是别想着用这类技术做真实风格的电影了,只把它视为一种新形式的实验媒体即可。玩得开心哦!

一步到位的工具(文本转视频):使用文本 prompt 生成全新的视频片段

理论上讲,这类技术有无限可能性 —— 只要你能将其描述出来(就像静态图像生成那样),就可能将其用于直播表演或生成任何超现实和风格化的内容。但从实践角度看,为了训练视频模型,收集多样化和足够大的数据集要难得多,因此仅靠文本来设定生成条件,很难用这些模型实现利基(niche)的美学风格。

使用这种方法,只能很宽松地控制创意工作。当与图像或视频条件化处理(即变形工作流程)组合使用时,这种技术就会强大得多。

图片

                                 Kyle Wiggers 做的动画生成测试,使用了 Runway 的 Gen-2

变形:使用文本 prompt,再根据已有的图像或视频进行进一步的条件化处理

  • 图像到视频生成

很多视频生成工具都能让你以图像为条件生成视频。其做法可以是完全从你指定的图像开始生成,也可以将指定图像用作语义信息、构图和颜色的粗略参考。

人们经常会使用传统的静态图像模型生成起始图像,然后再将其输入视频模型。
                                这里生成的每一段视频都是使用一张唱片封面作为起始图像,作者:Stable Reel

  • 视频到视频生成

类似于图像生成模型中的图像到图像过程,也有可能将输入视频的信息嵌入到视频模型中,再加上文本 prompt,让其生成(去噪)输出。

我并不理解这其中的具体过程,但似乎这个过程不仅能在逐帧层面上匹配输入视频片段(如同使用 Stable Diffusion 进行风格化处理),而且能在整体和运动层面上匹配。和图像到图像生成过程一样,这个过程受去噪强度控制。

图片

如果运气好并且有合适的 prompt,你也可以输入视频来「启发」模型重新想象源视频中的运动,并以完全不同的形式将其呈现出来。使用 webui txt2vid 中的 Zeroscope 完成,使用了 vid2vid 模式。

优点:

  • 这类技术具有最大的可能性,并且会随时间不断改进。
  • 在专业动画知识方面没有进入门槛。
  • 相比于逐帧的技术,这类技术的结果往往更加平滑,通常也更为一致。
  • 对于「变形」工作流程而言,这可能是比逐帧方法更简单直接的方法。

缺点:

  • 得到的结果通常显得离奇怪异,一看就是 AI 生成的,而且这种情况比静态图像严重多了。在涉及人的仿真实影像方面尤其明显。
  • 计算成本高。相比于图像 AI,更难以在本地硬件上运行。
  • 存在视频时长短和上下文短等限制(目前而言)。

免费工具:

  • Stable Video (SVD)—— 来自 StabilityAI 的开源视频扩散模型。目前很多托管式应用和工具都在快速部署实现该模型。
  • SVD ComfyUI 实现
  • SVD 时间 ControlNet
  • MotionCtrl—— 经过增强,允许在各种视频模型中控制目标运动和摄像机轨迹。
  • Emu Video——Meta 的视频生成模型的预览演示。
  • A1111 webui 的文本转视频插件,可搭配以下模型使用(如果你的硬件足够):
  • VideoCrafter
  • Zeroscope

插件和附加组件:

  • 用于 Blender 的 Pallaidium—— 一个多功能工具包,包含跨图像、视频甚至音频领域的生成功能。
  • 此外,你还能在 Hugging face space 上找到一些免费演示。

付费工具(有试用版):

  • Runway 的 Gen2
  • Kaiber 的 Motion 模式
  • Pika labs(受限 beta 版)

注:最好的情况是你有足够的优良硬件(即 GPU)在本地运行这些工具。如果没有,你也可以尝试运行在远程计算机上的、功能有限的免费服务,比如 Google Colab,不过大多数免费或试用服务的功能都有限。
 
使用运动压缩增强的图像模型

随着 AnimateDiff 的日益流行,出现了一个使用视频或「运动」压缩来增强已有图像扩散模型的新兴领域。相比于使用逐帧技术生成的结果,其生成的结果更相近于原生视频模型(如上面介绍的)。这种技术的优势是你还可以使用为 Stable Diffusion 等图像模型构建的工具,如社区创建的任何检查点模型、LoRA、ControlNet 以及其它条件化处理工具。

你甚至有可能通过 ControlNet 提供视频条件化处理,就像是使用逐帧技术一样。社区仍在积极实验这一技术。可用的技术有的来自静态图像模型(比如 prompt 遍历),也有的来自视频原生模型。

如下视频为使用 ComfyUI 中 AnimateDiff 完成的动画,过程使用了多个不同的 prompt 主题。

视频链接:https://www.instagram.com/p/Cx-iecPusza/?utm_source=ig_embed&utm_campaign=embed_video_watch_again

这种技术中的运动本身通常非常原始,只是在视频片段中松散地插入对象和流,这往往会将事物变形成其它模样。不过,这种技术有更好的时间一致性,而且仍处于起步阶段。当场景很抽象,没有具体物体时,这种方法能得到最好的结果。

优点:

  • 可以受益于现有图像扩散模型的进展。
  • 可以通过去噪或使用 ControlNet 用视频来进行条件化处理。
  • 处理抽象、流运动效果很好。

缺点:

  • 难以为人物或不常见的物体产生复杂、连贯一致的运动,反而常出现变形问题。
  • 和视频原生模型一样,计算成本高。相比于图像 AI,更难以在本地硬件上运行。
  • 受限于较短的上下文窗口(目前而言),但也有一些人正在实验解决方案。

免费工具:

目前,AnimateDiff (SD v1.5) 的实现一马当先:

  • 用于 AnimateDiff 的 A1111 webui 插件
  • ComfyUI 中 AnimateDiff 实现
  • VisionCrafter—— 一个用于 AnimateDiff 实现等项目的 GUI 工具
  • 用于 SD XL:Hotshot-XL
  • 多功能实现:Enfugue

付费工具:

  • 目前好像没有

整合语音合成的人脸动画

大家都知道,这是一个流行迷因背后的技术。你可能看过一个相对静止的人物(相机可能在移动)只有脸动着说话,这多半是用到了 AI 人脸动画化和语音合成工具的组合方法。

这其中组合了多个技术步骤和组件。其源图像多半是使用图像生成 AI 制作的,但也可以使用任何带有人脸的图像。语音是根据文本生成的,并根据所选任务的音色进行了条件化处理。然后再使用另一个工具(或工具包中的某个模型)合成与音频唇形同步的人脸动画 —— 通常只生成图像中脸部和头部区域的运动。使用预训练的数字化身也能让身体动起来。
                     在发布热门的 Belenciaga 视频之前,作者 demonflyingfox 就已经发布了一篇分步教程:https://youtu.be/rDp_8lPUbWY?si=BWNKe7-KTJpCrNjF

优点:

  • 可用于轻松制作迷因动图。
  •  …… 呃,有喜剧效果?

缺点:

  • 通常看起来不自然。我还想不出这能有什么实际用途。
  • 过于依赖付费应用提供的闭源人脸动画工具。
  • 即使你使用自己的录像来训练数字化身,得到的结果也过于呆板,动态效果很差。

免费工具:

  • ElevenLabs—— 有使用次数限制,但次数似乎每个月都会刷新。
  • A1111 WebUI 的 Wav2Lip 插件 —— 用于生成唇形同步动画的工具。看起来仅限于嘴部区域。

你也可以在网上直接搜索文本转语音服务,不可胜计,但效果多半赶不上 ElevenLabs。

至于全脸动画化,就我所知,目前仅有一些付费应用提供了试用版,而且使用很受限。

付费工具(有试用版):

人脸动画制作(通常会搭配语音合成):

  • D-ID
  • Heygen
  • Synesthesia

搜索「D-ID 替代品」就能找到很多。

生成三维的人物运动

这是指为 3D 人物合成运动的技术。这类技术可以应用于 3D 动画电影、视频游戏或其它 3D 交互应用。正如图像和视频领域一样,新兴的 AI 工具让人可通过文本来描述人物的运动。此外,一些工具还能根据很少的关键姿势来构建运动或者在交互环境中实时动态地生成动画。
                              Nikita 的充满天才巧思的元人工智能电影预告片,其中将 AI 的运动学习过程展现成了一部滑稽幽默的有趣短片。

由于本文的关注重点是生成工具,因此没有包含自动化某些非创意任务的 AI 应用,比如 AI 驱动的运动跟踪、合成、打码等,例子包括 Move.ai 和 Wonder Dynamics。

优点:

  • 能整合进现有的 3D 动画制作流程中,可减少重复性任务,有望成为动画老手的好帮手。
  • 能很好地处理物理效果和重量。
  • 在未来的视频游戏中实现动态的人物动画?

缺点:

  • 似乎受限于人类形态的双足式人物。
  • 还需要其它工具辅助。只是 3D 动画制作流程的一个组件。你需要知道接下来该做什么。
  • 训练过程通常基于人类运动数据,这意味着到目前为止这些工具只能实现基于真实物理效果的运动,无法实现风格化或卡通中的运动机制。

免费工具(或可免费使用部分功能的服务):

  • Mootion
  • Omni Animation
  • Cascadeur—— 动画制作助理,可以根据最小化的输入创建平滑的、基于物理机制的动画和姿势。可控性高,可能会成为未来一个主力工具。
  • ComfyUI 中的 MDM、MotionDiffuse 和 ReMoDiffuse 实现。

付费工具:

  • 免费工具的付费套餐会提供更多功能,使用限制也更少。

LLM 驱动的工具

从理论上讲,由于大型语言模型(LLM)在编程任务上表现出色,尤其是经过微调之后,那么我们就可以在制作动画的软件中让其编程和编写脚本。这就意味着按照常规工作流程制作动画时,能让 AI 从头到尾一直辅助。极端情况下,AI 能帮你完成一切工作,同时还能为后端流程分配适当的任务。

在实践中,你也能尝试这么做了!举个例子,Blender 配备了非常广泛的 Python API,允许通过代码操作该工具,因此现在已经有几个类似 ChatGPT 的辅助工具可用了。这个趋势不可避免。只要有代码,LLM 多半就会有用武之地。

优点:

  • 潜力 —— 最终突破创意工作者面临的任何技术障碍。
  • 可用作创意软件的助理,消除繁琐重复的任务,帮你深度挖掘文档内容。

缺点:

  • 如果 AI 能帮你创造一切,那么成为创意工作者还有什么意义?
  • 目前,LLM 只能运行在强大的远程计算机上,通常是按 token 数收费或采用订阅制。

免费工具:

  • Blender Chat Companion——(类似于 Blender Copilot)Blender 中的一个 ChatGPT 实现,专用于处理适当的任务。使用了 ChatGPT API,这需要付费。

付费工具:

  • Genmo—— 承诺会实现「创意通用智能」,采用了多步过程并且全都可以通过聊天界面控制。
  • Blender Copilot——(类似于 Blender Chat Companion)Blender 中的一个 ChatGPT 实现,专用于处理适当的任务。使用了 ChatGPT API,这需要付费。

注:还有一个即将推出的 ChatUSD—— 这是一个可以操作和管理 USD 的聊天机器人,这是由皮克斯最初创建的标准,用以统一和简化动画电影制作中的 3D 数据交换和并行化。目前没有更多相关消息了,但英伟达似乎很欢迎这项标准并在推动其成为各种 3D 内容的标准,而不只是电影。

终于完结了!内容很多,但我多半还是遗漏了一些东西。你觉得还有什么内容有待补充或还有什么相关工具值得提及,请在评论区与我们分享。

原文链接:https://diffusionpilot.blogspot.com/2023/09/overview-ai-animation.html#id_generative_video_models
入门视频生成图像生成
相关数据
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

调度技术

调度在计算机中是分配工作所需资源的方法。资源可以指虚拟的计算资源,如线程、进程或数据流;也可以指硬件资源,如处理器、网络连接或扩展卡。 进行调度工作的程序叫做调度器。调度器通常的实现使得所有计算资源都处于忙碌状态,允许多位用户有效地同时共享系统资源,或达到指定的服务质量。 see planning for more details

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

学习曲线技术

在机器学习领域,学习曲线通常是表现学习准确率随着训练次数/时长/数据量的增长而变化的曲线

语音合成技术

语音合成,又称文语转换(Text to Speech)技术,是将人类语音用人工的方式所产生,能将任意文字信息实时转化为标准流畅的语音朗读出来,相当于给机器装上了人工嘴巴。它涉及声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域的一项前沿技术,解决的主要问题就是如何将文字信息转化为可听的声音信息,也即让机器像人一样开口说话。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

插值技术

数学的数值分析领域中,内插或称插值(英语:interpolation)是一种通过已知的、离散的数据点,在范围内推求新数据点的过程或方法。求解科学和工程的问题时,通常有许多数据点借由采样、实验等方法获得,这些数据可能代表了有限个数值函数,其中自变量的值。而根据这些数据,我们往往希望得到一个连续的函数(也就是曲线);或者更密集的离散方程与已知数据互相吻合,这个过程叫做拟合。

聊天机器人技术

聊天机器人是经由对话或文字进行交谈的计算机程序。能够模拟人类对话,通过图灵测试。 聊天机器人可用于实用的目的,如客户服务或资讯获取。有些聊天机器人会搭载自然语言处理系统,但大多简单的系统只会撷取输入的关键字,再从数据库中找寻最合适的应答句。

图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

Jupyter技术

Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。

文本生成技术

文本生成是生成文本的任务,其目的是使人类书写文本难以区分。

图像修复技术

语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

视频生成技术

视频生成是指利用深度学习等技术生成视频的任务。

暂无评论
暂无评论~