Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

2B参数性能超Mistral-7B:面壁智能多模态端侧模型开源

千元机也能本地运行。

在大模型不断向着大体量方向前进的同时,最近一段时间,人们在优化和部署方面也取得了成果。

2 月 1 日,面壁智能联合清华 NLP 实验室在北京正式发布了旗舰端侧大模型「面壁 MiniCPM」。新一代大模型被称为「性能小钢炮」,直接拥抱终端部署,同时也具有同量级最强的多模态能力。

面壁智能本次提出的 MiniCPM 2B 参数量仅有 20 亿,使用 1T token 的精选数据训练。这是一个参数量上与 2018 年 BERT 同级的模型,面壁智能在其之上实现了极致的性能优化与成本控制,让该模型可以「越级打怪」。

面壁智能联合创始人、CEO 李大海将新模型与业内知名开源大模型 Mistral-7B 进行了对比,在多项主流评测榜单上,MiniCPM 2B 的性能全面超越了后者。

图片

与微软近期提出的「小模型」Phi-2 相比,MiniCPM 也有很大优势。

图片

李大海表示,面壁智能的新模型还能越级实现 13B、30B 甚至 40B 模型的能力。在最接近用户体验的评测榜单 MT-Bench 上,MiniCPM 取得了 7 分的成绩(GPT-4-Turbo 为 9 分)。

图片

在现场,面壁智能也演示了 MiniCPM 的实际应用效果。虽然参数量不大,但该模型可以实现文本翻译、角色扮演等诸多大模型应有的能力,并拥有丰富的知识,难度较高的代码解释任务也不在话下。

图片

因为能够部署在端侧,在面临一些突发事件时,MiniCPM 也可以给人们提供及时帮助:

图片

最近,各家手机厂商纷纷提出了端侧大模型,在把大语言模型压缩到较小体量之后,我们就能用它连接更多场景,在算力、内存受限的情况下获得更高程度的智能。相比之下,面壁智能提出的新技术更加轻便,可适用于更低配置,或较早期型号的手机。

据面壁智能介绍,MiniCPM 端侧模型经历了 Int4 量化后压缩了 75% 体量,只占用 2G 内存,与此同时性能几乎没有损失,因此已在各类常见型号的手机上实现了跑通。

图片

因为支持移动端 CPU 的推理,MiniCPM 可以很大程度上节约使用成本。面壁智能为我们算了一笔账:一台搭载骁龙 855 的手机使用 MiniCPM,一块钱电费可处理 170 万 token,这个价格仅为云端运行的 Mistral-Medium 的 1%。

除了端侧模型,面壁智能还展示了其在多模态大模型方面的探索,并开源了 12B 参数量的 OmniLMM。在发布会上,面壁智能演示了 Gemini 发布时同款的石头剪刀布 demo。用英文向 AI 提问:我正在玩什么游戏?大模型会回答:石头剪子布。

图片

与此同时,OmniLMM 也可以认出人类的手势,还能告诉你如果要赢应该出什么。

OmniLMM 还可以理解很多图片中的信息并进行推理,如地标建筑、电视台的台标、人们组织的活动等内容。

图片

看来,我们距离真正多模态的大模型,以及新形态的应用已经不远了。

面壁智能大模型极致性能的背后,源于该公司长期以来的技术积累。自 2021 年,面壁智能就构建了高效的技术栈,集中在 Infra、算法和数据方法论三个方向。其中,自研的 BMTrain 高效训练框架至关重要。

图片

在算法层面上,面壁智能也积累了模型沙盒体系,把大模型从炼丹提升到了实验科学的程度,在理论上不断寻找超参数和规模的最优解,如最优的 batch size、所有尺寸模型通用的超参数配置。

目前,面壁智能已积累了大量高质量的数据。在昨天的发布后,面壁智能开源了自身的新一代大模型系列(包含 MiniCPM-SFT / DPOMiniCPM-V & MiniCPM-SFT / DPO-int4),以及训练 MiniCPM 两个阶段的数据配方以供行业参考。

开源地址(含技术报告):

MiniCPM GitHub:https://github.com/OpenBMB/MiniCPM

OmniLMM GitHub:https://github.com/OpenBMB/OmniLMM

面壁智能源于清华 NLP 实验室,是在国内较早开展大模型研究的团队之一,其在 2018 年发布了全球首个基于知识指导的预训练模型 ERNIE。2022 年 8 月开始公司化运作的面壁智能,去年经历了两轮融资,其推出的应用「面壁露卡」也拿到了网信办第二批大模型备案。

目前,面壁智能已经组建起 100 余人的科研团队,其中 80% 人员来自清北,平均年龄 28 岁。

图片

面壁智能正在构建大模型 + Agent 的双引擎战略,希望能构建出更小规模、更快速度、更低成本的解决方案。

今年,面壁智能还将加快速度迭代新技术。「我们会在春节之后不断发布 MiniCPM 的新版本,性能还会进一步提升。我们要给大家春节的休息时间,」刘知远表示。

产业面壁 MiniCPM面壁智能
相关数据
刘知远人物

刘知远,清华大学计算机系副教授、博士生导师。主要研究方向为表示学习、知识图谱和社会计算。2011 年获得清华大学博士学位,已在 ACL、IJCAI、AAAI 等人工智能领域的著名国际期刊和会议发表相关论文 60 余篇,Google Scholar 统计引用超过 2100 次。承担多项国家自然科学基金。曾获清华大学优秀博士学位论文、中国人工智能学会优秀博士学位论文、清华大学优秀博士后、中文信息学会青年创新奖,入选中国科学青年人才托举工程、CCF-Intel 青年学者提升计划。担任中文信息学会青年工作委员会执委、副主任,中文信息学会社会媒体处理专委会委员、秘书,SCI 期刊 Frontiers of Computer Science 青年编委,ACL、COLING、IJCNLP 领域主席。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

量化技术

深度学习中的量化是指,用低位宽数字的神经网络近似使用了浮点数的神经网络的过程。

推荐文章
暂无评论
暂无评论~