https://huggingface.co/01-ai https://www.modelscope.cn/organization/01ai
Vision Transformer(简称 ViT)用于图像编码,使用开源的 OpenClip ViT-H/14 模型初始化可训练参数,通过学习从大规模「图像 - 文本」对中提取特征,使模型具备处理和理解图像的能力。 Projection 模块为模型带来了图像特征与文本特征空间对齐的能力。该模块由一个包含层归一化(layer normalizations)的多层感知机(Multilayer Perceptron,简称 MLP)构成。这一设计使得模型可以更有效地融合和处理视觉和文本信息,提高了多模态理解和生成的准确度。 Yi-34B-Chat 和 Yi-6B-Chat 大规模语言模型的引入为 Yi-VL 提供了强大的语言理解和生成能力。该部分模型借助先进的自然语言处理技术,能够帮助 Yi-VL 深入理解复杂的语言结构,并生成连贯、相关的文本输出。
第一阶段:零一万物使用 1 亿张的「图像 - 文本」配对数据集训练 ViT 和 Projection 模块。在这一阶段,图像分辨率被设定为 224x224,以增强 ViT 在特定架构中的知识获取能力,同时实现与大型语言模型的高效对齐。 第二阶段:零一万物将 ViT 的图像分辨率提升至 448x448,这一提升让模型更加擅长识别复杂的视觉细节。此阶段使用了约 2500 万「图像 - 文本」对。 第三阶段:零一万物开放整个模型的参数进行训练,目标是提高模型在多模态聊天互动中的表现。训练数据涵盖了多样化的数据源,共约 100 万「图像 - 文本」对,确保了数据的广泛性和平衡性。