Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

五种资源类别,如何提高大语言模型的资源效率,超详细综述来了

本综述深入探讨了大型语言模型的资源高效化问题。

近年来,大型语言模型(LLM)如 OpenAI 的 GPT-3 在人工智能领域取得了显著进展。这些模型,具有庞大的参数量(例如 1750 亿个参数),在复杂度和能力上实现了飞跃。随着 LLM 的发展趋势朝着不断增大的模型规模前进,这些模型在从智能聊天机器人到复杂数据分析,乃至于多领域研究中的应用越发广泛。然而,模型规模的指数级增长带来了巨大的资源需求,尤其是在计算、能源和内存等方面。

这些资源的巨大需求使得训练或部署这样庞大的模型成本高昂,尤其是在资源受限的环境(如学术实验室或医疗领域)中更是如此。此外,由于训练这些模型需要大量的 GPU 使用,因此它们的环境影响也成为日益关注的问题,尤其是在电力消耗和碳排放方面。如何在资源有限的环境中有效部署和应用这些模型成为了一个紧迫的问题。

来自 Emory University,University of Virginia 和 Penn State University 的研究团队通过全面梳理和分析了当前 LLM 领域的最新研究,系统地总结了提高模型资源效率的多种技术,并对未来的研究方向进行了深入探讨。这些工作不仅涵盖了 LLM 的全生命周期(预训练、微调、提示等),还包括了多种资源优化方法的分类和比较,以及对评估指标和数据集的标准化。本综述旨在为学者和实践者提供一个清晰的指导框架,帮助他们在资源有限的环境中有效地开发和部署大型语言模型
图片
论文链接:https://arxiv.org/pdf/2401.00625

一、引言

资源高效的 LLM 需要理解 LLM 生命周期中涉及的关键资源。在这项综述中,作者将这些资源系统地归类为五个主要类别:计算、内存、能源、资金和通信成本。高效性在这里被定义为投入资源与产出的比例,一个更高效的系统能够在消耗更少资源的同时产生相同水平的输出。因此,一个资源高效的 LLM 旨在在所有这些维度上最大化性能和能力,同时最小化资源开销,从而实现更可持续和更易获取的 AI 解决方案。

资源效率在 LLM 中是一个至关重要且复杂的领域,它需要创新的解决方案来应对显著的挑战。这些挑战一共包括五个层面:

  • 模型层面:自回归生成的低并行性导致了显著的延迟问题,这在大型模型或长输入长度下尤其突出,影响训练和推理的高效处理。此外,自注意力层的二次复杂性随着输入长度的增加而显著增加,成为计算瓶颈。
  • 理论层面:缩放法则和收益递减指出,随着模型变大,每增加一个参数所带来的性能提升在减小。此外,理论上关于机器学习中的泛化和过拟合也对 LLM 的资源效率提出了挑战。
  • 系统层面:考虑到 LLM 的庞大模型大小和训练数据集,将它们全部放入单个 GPU/TPU 的内存中变得不可行。因此,为 LLM 优化训练过程的复杂系统设计变得至关重要。
  • 伦理层面:许多 LLM 依赖于大型且专有的训练数据集,这限制了提高效率的某些技术的应用。此外,许多先进的 LLM 是封闭源的,这意味着在缺乏对模型内部工作的深入了解的情况下提高效率变得更加复杂。
  • 评价指标层面:LLM 的多样化和复杂性使得开发全面的资源效率评价指标面临独特挑战。与优化较小模型的一两种资源相比,LLM 呈现出多目标问题,要求在多个关键资源上同时进行优化。

为了应对上述挑战,该综述提供了以下贡献:

  • 资源高效 LLM 技术的全面概述:对增强 LLM 资源效率的技术进行了全面的概述,涵盖了 LLM 整个生命周期的各种方法和策略。
  • 技术按资源类型的系统分类和分类法:建立了一个系统的分类和分类法,根据它们优化的资源类型对资源高效的 LLM 技术进行组织。
  • 评估指标和数据集的标准化:提出了一套专门用于评估 LLM 资源效率的评估指标和数据集的标准化。
  • 识别差距和未来研究方向:对当前在创造资源高效 LLM 方面的瓶颈和未解决的挑战进行了深入探讨,并指出了未来研究的潜在途径。

二、资源高效大型语言模型的全新分类法

该综述提出了一个全面的分类法,以系统地理解和优化大型语言模型(LLM)中涉及的关键资源。这个分类法包括五个关键领域:计算、内存、能源、资金和网络通信,每个领域都针对资源利用的不同方面:

1. 资源分类

  • 计算:涉及训练、微调和执行 LLM 所需的处理能力。计算效率的评估包括考虑操作数量(如浮点操作)、算法效率和处理单元(如 GPU 或 TPU)的利用。
  • 内存:内存效率涉及所需的 RAM 和存储量。尤其是拥有数十亿参数的 LLM,需要大量内存来存储模型权重和处理大型数据集。
  • 能源:指模型生命周期中消耗的电力。考虑到环境影响和运营成本,能源效率至关重要。这包括减少能耗的策略,如优化硬件利用、使用节能硬件等。
  • 资金:财务资源是一个关键考虑因素,尤其对于小型组织和研究者。这包括硬件采购成本、运行模型的电费和潜在的云计算费用。
  • 网络通信:在分布式训练和基于云的部署中,网络带宽和延迟变得重要。高效的网络通信意味着减少在分布式系统节点之间或云端与用户之间传输的数据量,这对训练时间和实时应用的响应性有重大影响。

2. 技术分类

此外,该综述还引入了一个结构化的分类法,将提升 LLM 资源效率的技术分为明确、定义清晰的层级。其中包括五个主要类别:架构设计、预训练、微调、推理和系统设计。每个类别都在高效 LLM 开发和部署的生命周期中扮演着不可或缺的角色。

  • 架构设计:检查 LLM 的结构基础,分为基于 Transformer 和非 Transformer 架构。
  • 预训练:审视 LLM 开发的初步阶段,包括内存效率和数据效率。
  • 微调:针对预训练模型的优化,分为参数高效微调和全参数微调。
  • 推理:在操作阶段,采用各种策略,如模型压缩和动态加速。
  • 系统设计:关注系统层面的考虑,包括部署优化和支持基础设施等。

这个分类法旨在提供对多样化方法和策略的结构化和细致理解。这些方法和策略用于提升 LLM 的效率和加速,为当前研究领域提供了一个全面的视角。
图片
三、方法论

1. 大型语言模型架构设计的新进展

该综述重点探讨了大型语言模型(LLM)的两大架构设计方向:高效的 Transformer 结构和非 Transformer 架构。

  • 高效的 Transformer 结构:这一类别包括了通过创新技术优化 Transformer 模型的架构,旨在降低计算和内存需求。例如,Reformer 通过局部敏感哈希技术来改进注意力机制,而 Linear Transformer 则利用线性映射来减少计算复杂度。AFT 和 KDEFormer 等其他方法则通过不同方式实现时间和内存效率的大幅提升。
  • 非 Transformer 架构:这一类别探索了替代 Transformer 的新型架构。例如,模块化网络(MoE)技术通过结合多个专业化模型来处理复杂任务,Switch Transformer 和 GLaM 等则利用稀疏路由技术在增加模型参数的同时保持效率。另外,像 RWKV 这样的架构则结合了 Transformer 的训练效率和 RNN 的推理效率。

这些创新方向不仅优化了 LLM 的资源效率,也推动了语言模型技术的整体发展。

2. 大型语言模型预训练:效率与创新

该综述探索了 GPT-4 等大型语言模型(LLM)的高效预训练策略,这些策略不仅注重速度,还着眼于计算资源的最优利用和创新的数据管理

  • 内存效率
    • 分布式训练:将模型训练任务分配给多个节点,以加速训练过程。数据并行(DP)和模型并行(MP)是两种主要的策略。DP 通过将初始数据集分割并由多个加速器并行训练,而 MP 则将模型的层或张量分布到多个加速器上。
    • 混合精度训练:这种技术通过同时使用 16 位和 32 位浮点类型来加速深度学习模型的训练,特别适用于大型语言模型的训练。
  • 数据效率
    • 重要性采样:这种方法通过优先处理信息丰富的训练实例来提高模型的数据效率。
    • 数据增强:通过创建现有数据的修改副本,使当前数据得到充分利用。
    • 训练目标:预训练目标的选择是决定数据效率的另一个因素。这通常涉及模型架构、输入 / 目标构建和遮蔽策略的设计。

通过这些策略,综述旨在展示如何以资源高效的方式预训练大型语言模型,不仅加速了训练过程,还确保了先进 LLM 的可持续和成本效益发展。

3. 大型语言模型微调:平衡性能与资源

该综述探讨了 GPT-4 等大型语言模型在特定任务上的微调策略。这些策略旨在在实现任务特定性能和维持资源效率之间找到平衡点。

  • 参数高效微调
    • 基于遮蔽的微调:仅更新模型参数的子集,其他参数在反向传播过程中被「冻结」或遮蔽。
    • 基于适配器的微调:在预训练模型的现有层之间插入额外的轻量级层(适配器)。在微调期间,只更新这些适配器层的参数,而原始模型参数保持固定。
  • 参数微调:与参数高效微调不同,全参数微调涉及修改所有参数。尽管训练成本更高,但通常可以获得比参数高效方法更好的性能。然而,这种方法在简单数据集上可能并不总是有效,且在训练成本和 GPU 内存消耗方面也面临挑战。

通过这些策略,综述旨在展示如何在保证大型语言模型性能优化和资源限制之间达到平衡的微调方法。

4. 大型语言模型推断:追求效率与质量

该综述探讨了如 GPT 系列的大型语言模型在推断阶段的优化技术,重点是减少计算负载和内存使用,同时保持高质量输出。

  • 模型压缩
    • 剪枝:通过移除模型中的特定参数来降低复杂度。包括结构化剪枝(针对整体结构,如神经元或通道)和非结构化剪枝(针对单个权重或连接)。
    • 量化:将模型中的浮点数转换为较少位数的表示(如整数),旨在减少模型存储需求和加快计算速度。
    • 知识蒸馏:将大型模型的知识转移到更紧凑的网络中,以减少推断延迟并增强特定任务解决能力。
  • 动态加速
    • 早期退出:根据某些标准提前终止模型的某些层的计算,用于简化输入样本的处理。
    • 输入裁剪:动态减少输入序列长度,根据内容来分配不同的计算资源给不同的输入标记。
    • 标记并行:利用技术如推测执行来并行生成多个标记,而非传统的顺序方式。

通过这些策略,综述旨在展示如何在实际应用中高效部署大型语言模型,同时考虑资源限制和性能需求。

5. 大型语言模型的系统设计:优化与应用

该综述探讨了如 GPT 系列的大型语言模型在系统设计方面的关键策略,特别是在资源受限环境中的高效推断。

  • 部署优化
    • 硬件卸载:通过将临时不需要的数据从快速加速器转移到更慢但更大的主、辅存储(如 CPU 内存和磁盘)中,优化大型 LLM 的运行效率。有效的卸载策略对整体系统效率至关重要。
    • 协作推断:多个用户或系统合作完成 LLM 的推断任务,每个参与者贡献自己的资源,如计算能力或数据,以克服个体用户或系统的限制,实现更高效、准确的推断。
  • 支持基础设施
    • 库:介绍了几个著名的大型语言模型框架,如 DeepSpeed、Megatron-LM、Colossal-AI、Mesh-TensorFlow 和 GPT-NeoX,它们为大规模分布式训练提供多级并行策略。
    • 边缘设备:探索在边缘设备上部署 LLM 的研究趋势,这些设备通常具有有限的计算资源。例如,通过低秩适应和噪声对比估计等技术来降低 LLM 在边缘设备上的内存需求。
  • 其他系统
    • Tabi:提出了一个多级推断引擎的推断系统,通过使用多个 DNN 处理任务中的异构查询来减少 LLM 的推断延迟。
    • 近重复序列搜索:利用最小哈希技术来提高 LLM 的近重复序列搜索的效率和可扩展性。

通过这些策略,综述旨在展示大型语言模型在各种部署场景中的系统设计如何实现效率和可扩展性的最大化。

四、大型语言模型资源效率技术分类总结

该综述探讨了应用于大型语言模型(LLM)以提升其在不同资源上的效率的多种技术。这些资源包括计算、内存、能源、财务成本和网络通信。每项技术在优化 LLM 资源效率方面扮演着重要角色。

计算效率

  • 直接影响:包括具有近似和硬件感知注意力机制的变换器架构,通过简化计算密集的注意力计算来加速过程;非结构化、结构化和上下文剪枝,通过移除不重要的权重神经元来减少冗余计算。
  • 间接影响:数据并行和参数高效微调,通过分布式工作负载和减少参数更新分别间接提高计算效率。

内存效率

  • 直接影响:剪枝量化通过减少模型大小来显著节约内存;知识蒸馏通过训练较小的模型来模仿较大的模型。
  • 间接影响:分布式训练,如数据和模型并行,有效管理多设备间的内存使用,减轻单个设备的负担。

能源效率

  • 直接影响:结构化剪枝量化通过减少操作数量和数据大小,降低训练和推断的能源消耗;上下文剪枝通过最小化不必要的计算来节省能源。
  • 间接影响:近似注意力机制等主要面向计算效率的技术,由于减少了计算负载,间接促进能源节省。

财务成本效率

间接影响:数据效率方法,如优化的训练目标和数据增强,通过提高数据使用效果,可能缩短训练时间,减少计算资源使用;动态推断技术,如早期退出和输入裁剪,通过减少推断阶段的运算需求,降低整体部署成本。

网络通信效率

  • 直接影响:混合精度训练通过减少处理器间需要通信的数据大小,直接影响数据传输效率;权重量化通过最小化通信过程中的数据负载。
  • 间接影响:协作推断通过优化数据传输和处理来提高网络通信效率。

通过这些策略,该综述旨在展示如何通过多种技术提高大型语言模型在各种资源上的效率。详细的技术与资源的对应关系可见下表。图片
五、大型语言模型评估数据集和指标

该综述详细分析了评估大型语言模型(LLM)资源效率的多元化指标,这些指标为全面理解 LLM 的资源效率提供了关键指导。

计算效率指标

  • FLOPs:浮点运算次数,量化计算效率。
  • 训练时间:训练 LLM 所需的总时间,反映了模型复杂性。
  • 推断时间 / 延迟:LLM 生成输出所需的时间,关键评估实际应用中的实用性。
  • 吞吐量:LLM 处理请求的效率,以每秒生成的标记或完成任务的速度衡量。
  • 加速比:与基准模型相比推断速度的改善程度。
  • 内存效率指标
  • 参数数量:LLM 神经网络中可调变量的数量。
  • 模型大小:存储整个模型所需的存储空间。

能源效率指标

  • 能源消耗:以瓦时或焦耳表示,反映 LLM 生命周期中的电力使用。
  • 碳排放:与模型能源使用相关的温室气体排放量。

财务成本效率指标

参数成本:训练(或运行)LLM 的总成本除以参数数量的比值。

网络通信效率指标

通信量:在特定 LLM 执行或训练过程中网络间传输的数据总量。

其他指标

  • 压缩比:压缩模型与原始模型大小的比例。
  • 忠诚度和保真度:衡量教师和学生模型之间预测一致性和预测概率分布对齐程度。
  • 鲁棒性:衡量 LLM 对攻击后性能和查询次数。
  • 帕累托最优性:在不同竞争因素间取得的最佳平衡。

数据集和基准测试

  • Dynaboard:动态基准,评估内存使用、吞吐量、公平性和鲁棒性等指标。
  • EfficientQA:聚焦建立准确、内存高效的开放领域问答系统
  • SustaiNLP 2020:挑战参与者开发能源高效的 NLP 模型。
  • ELUE 和 VLUE:专注于评估 NLP 和视觉语言模型的效率和性能。
  • Long-Range Arena:专为评估长内容任务上高效 Transformer 模型而设计。
  • Efficiency-aware MS MARCO:在 MS MARCO 信息检索基准测试中增加了效率指标。

通过这些策略,该综述旨在提供一种全面评估大型语言模型资源效率的方法论。

六、大型语言模型的未来挑战和研究方向

随着大型语言模型(LLM)领域的不断进步,我们面临着多种开放性挑战,这些挑战为未来的研究方向提供了丰富的机遇。

处理资源类型的冲突:不同优化技术之间存在性能指标的权衡,如计算效率与模型参数数量的矛盾。关键挑战在于开发全面优化策略,平衡计算效率、参数计数和内存使用等多个目标。

资源效率技术的综合:有效整合多种 LLM 优化方法以增强总体资源效率是一个显著挑战。目前缺乏对这些方法如何协同作用的研究,需要系统地结合不同策略,以显著提高模型效率。

标准化和统一评估:当前缺乏专门评估 LLM 资源效率的统一标准基准。这导致无法全面一致地评估各种 LLM 在资源利用方面的表现,迫切需要专注于资源效率的标准化基准

可解释性和鲁棒性:在追求效率的同时,也需关注 LLM 的可解释性和鲁棒性。开发既优化资源使用又保持透明度和弹性的方法,确保这些模型在不同部署场景中可靠且易于理解。

自动化机器学习(AutoML)在资源高效 LLM 中的应用:将 AutoML 集成到资源高效 LLM 的开发中是一个新兴领域。通过应用 Meta-Learning 和神经架构搜索(NAS),自动化模型优化的部分,有望减少手动超参数调整和定制模型设计的需求。

边缘计算中的 LLM:在边缘计算环境中部署 LLM 面临独特挑战,如设备的计算能力和内存资源限制。需要开发既资源高效又考虑隐私问题的 LLM 技术,以适应边缘计算场景。

理论洞察 LLM 的扩展规律:深入理解 LLM 性能如何随其规模和复杂性扩展是一个关键且未被充分探索的领域。这种理解对于开发不仅专注于模型压缩,而是针对提高 LLM 整体资源效率的方法至关重要。

七、结论

本综述深入探讨了大型语言模型(LLM)的资源效率问题,分析了当前的研究成果和挑战,并展望了未来的发展方向。它还讨论了 LLM 在计算、内存、能源、财务成本和网络通信等关键资源方面的高效技术,以及这些技术如何相互作用以提高整体效率。通过对比各种技术,综述揭示了它们在不同应用环境中的潜力和限制。

作者还强调了在资源效率评估中建立标准化和统一的评价体系的重要性。这不仅有助于更准确地比较不同 LLM 的性能,也为进一步的研究和开发提供了坚实的基础。

最后,综述探讨了 LLM 领域面临的一系列开放性挑战和潜在的研究方向,包括管理资源类型的冲突、综合资源效率技术、可解释性和鲁棒性、AutoML 的集成以及在边缘计算环境中部署 LLM。这些挑战提供了未来研究的丰富机遇,对于推动 LLM 向更高效、更可靠和更可持续的方向发展至关重要。

本综述为理解和优化 LLM 的资源效率提供了全面的视角,为未来在这一重要领域的研究提供了指导和灵感。
产业资源效率大型语言模型
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

信息检索技术

信息检索(IR)是基于用于查询检索信息的任务。流行的信息检索模型包括布尔模型、向量空间模型、概率模型和语言模型。信息检索最典型和最常见的应用是搜索引擎。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

自注意力技术

自注意力(Self-attention),有时也称为内部注意力,它是一种涉及单序列不同位置的注意力机制,并能计算序列的表征。自注意力在多种任务中都有非常成功的应用,例如阅读理解、摘要概括、文字蕴含和语句表征等。自注意力这种在序列内部执行 Attention 的方法可以视为搜索序列内部的隐藏关系,这种内部关系对于翻译以及序列任务的性能非常重要。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

剪枝技术

剪枝顾名思义,就是删去一些不重要的节点,来减小计算或搜索的复杂度。剪枝在很多算法中都有很好的应用,如:决策树,神经网络,搜索算法,数据库的设计等。在决策树和神经网络中,剪枝可以有效缓解过拟合问题并减小计算复杂度;在搜索算法中,可以减小搜索范围,提高搜索效率。

概率分布技术

概率分布(probability distribution)或简称分布,是概率论的一个概念。广义地,它指称随机变量的概率性质--当我们说概率空间中的两个随机变量具有同样的分布(或同分布)时,我们是无法用概率来区别它们的。

边缘计算技术

边缘运算(英语:Edge computing),又译为边缘计算,是一种分散式运算的架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理。边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

数据管理技术

数据管理是利用计算机硬件和软件技术对数据进行有效的收集、存储、处理和应用的过程,其目的在于充分有效地发挥数据的作用。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

云计算技术

云计算(英语:cloud computing),是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需求提供给计算机各种终端和其他设备。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

聊天机器人技术

聊天机器人是经由对话或文字进行交谈的计算机程序。能够模拟人类对话,通过图灵测试。 聊天机器人可用于实用的目的,如客户服务或资讯获取。有些聊天机器人会搭载自然语言处理系统,但大多简单的系统只会撷取输入的关键字,再从数据库中找寻最合适的应答句。

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

查询技术

一般来说,查询是询问的一种形式。它在不同的学科里涵义有所不同。在信息检索领域,查询指的是数据库和信息系统对信息检索的精确要求

知识蒸馏技术

Hinton 的工作引入了知识蒸馏压缩框架,即通过遵循“学生-教师”的范式减少深度网络的训练量,这种“学生-教师”的范式,即通过软化“教师”的输出而惩罚“学生”。为了完成这一点,学生学要训练以预测教师的输出,即真实的分类标签。这种方法十分简单,但它同样在各种图像分类任务中表现出较好的结果。

问答系统技术

问答系统是未来自然语言处理的明日之星。问答系统外部的行为上来看,其与目前主流资讯检索技术有两点不同:首先是查询方式为完整而口语化的问句,再来则是其回传的为高精准度网页结果或明确的答案字串。以Ask Jeeves为例,使用者不需要思考该使用什么样的问法才能够得到理想的答案,只需要用口语化的方式直接提问如“请问谁是美国总统?”即可。而系统在了解使用者问句后,会非常清楚地回答“奥巴马是美国总统”。面对这种系统,使用者不需要费心去一一检视搜索引擎回传的网页,对于资讯检索的效率与资讯的普及都有很大帮助。从系统内部来看,问答系统使用了大量有别于传统资讯检索系统自然语言处理技术,如自然语言剖析(Natural Language Parsing)、问题分类(Question Classification)、专名辨识(Named Entity Recognition)等等。少数系统甚至会使用复杂的逻辑推理机制,来区隔出需要推理机制才能够区隔出来的答案。在系统所使用的资料上,除了传统资讯检索会使用到的资料外(如字典),问答系统还会使用本体论等语义资料,或者利用网页来增加资料的丰富性。

自动化机器学习技术

机器学习最近在许多应用领域取得了长足的进步,这促成了对机器学习系统的不断增长的需求,并希望机器学习系统可以被新手快速地熟悉并使用。相应地,越来越多的商业企业推出产品旨在满足这种需求。这些服务需要解决的核心问题是:在给定数据集上使用哪种机器学习算法、是否以及如何预处理其特征以及如何设置所有超参数。这即是自动化学习(AutoML)企图解决的问题。

模型优化技术

像卷积神经网络(CNN)这样的深度学习模型具有大量的参数;实际上,我们可以调用这些超参数,因为它们原本在模型中并没有被优化。你可以网格搜索这些超参数的最优值,但需要大量硬件计算和时间。改进模型的最佳方法之一是基于在你的领域进行过深入研究的专家的设计和体系结构,他们通常拥有强大的硬件可供使用。常见的简单模型优化技巧包括迁移学习、dropout、学习率调整等

语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

量化技术

深度学习中的量化是指,用低位宽数字的神经网络近似使用了浮点数的神经网络的过程。

推荐文章
暂无评论
暂无评论~