Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

专补大模型短板的RAG有哪些新进展?这篇综述讲明白了

同济大学王昊奋研究员团队联合复旦大学熊赟教授团队发布检索增强生成(RAG)综述,从核心范式,关键技术到未来发展趋势对 RAG 进行了全面梳理。这份工作为研究人员绘制了一幅清晰的 RAG 技术发展蓝图,指出了未来的研究探索方向。同时,为开发者提供了参考,帮助辨识不同技术的优缺点,并指导如何在多样化的应用场景中最有效地利用这些技术。

大型语言模型(LLMs)已经成为我们生活和工作的一部分,它们以惊人的多功能性和智能化改变了我们与信息的互动方式。

然而,尽管它们的能力令人印象深刻,但它们并非无懈可击。这些模型可能会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

在现实世界的应用中,数据需要不断更新以反映最新的发展,生成的内容必须是透明可追溯的,以便控制成本并保护数据隐私。因此,简单依赖于这些 “黑盒” 模型是不够的,我们需要更精细的解决方案来满足这些复杂的需求。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。

RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。RAG 的出现无疑是人工智能研究领域最激动人心的进展之一。

本篇综述将带你全面了解 RAG,深入探讨其核心范式关键技术未来趋势,为读者和实践者提供对大型模型以及 RAG 的深入和系统的认识,同时阐述检索增强技术的最新进展和关键挑战。

图片

  • 论文原文:https://arxiv.org/abs/2312.10997
  • 官方仓库:https://github.com/Tongji-KGLLM/RAG-Survey

RAG 是什么?

图片

图 1 RAG 技术在 QA 问题中的案例

一个典型的 RAG 案例如图所示。如果我们向 ChatGPT 询问 OpenAI CEO Sam Atlman 在短短几天内突然解雇随后又被复职的事情。由于受到预训练数据的限制,缺乏对最近事件的知识,ChatGPT 则表示无法回答。RAG 则通过从外部知识库检索最新的文档摘录来解决这一差距。在这个例子中,它获取了一系列与询问相关的新闻文章。这些文章,连同最初的问题,随后被合并成一个丰富的提示,使 ChatGPT 能够综合出一个有根据的回应。

RAG 技术范式发展

RAG 的概念首次于 2020 年被提出,随后进入高速发展。RAG 技术的演进历程如图所示,相关研究进展可以明确地划分为数个关键阶段。在早期的预训练阶段,研究的焦点集中在如何通过预训练模型注入额外的知识,以此增强语言模型的能力。随着 ChatGPT 的面世,对于运用大型模型进行深层次上下文学习的兴趣激增,这推动了 RAG 技术在研究领域的快速发展。随着 LLMs 的潜力被进一步开发,旨在提升模型的可控性并满足不断演变的需求,RAG 的研究逐渐聚焦于增强推理能力,并且也探索了在微调过程中的各种改进方法。特别是随着 GPT-4 的发布,RAG 技术经历了一次深刻的变革。研究重点开始转移至一种新的融合 RAG 和微调策略的方法,并且持续关注对预训练方法的优化。
图片
图 2 RAG 技术发展的科技树

在 RAG 的技术发展过程中,我们从技术范式角度,将其总结成如下几个阶段:

朴素(Naive RAG)

前文案例中展示了经典的 RAG 流程,也被称为 Naive RAG。主要包括包括三个基本步骤:

1. 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。
2. 检索 — 根据问题和 chunks 的相似度检索相关文档片段。
3. 生成 — 以检索到的上下文为条件,生成问题的回答。

进阶的 RAG(Advanced RAG)

Naive RAG 在检索质量、响应生成质量以及增强过程中存在多个挑战。Advanced RAG 范式随后被提出,并在数据索引、检索前和检索后都进行了额外处理。通过更精细的数据清洗、设计文档结构和添加元数据等方法提升文本的一致性、准确性和检索效率。在检索前阶段则可以使用问题的重写、路由和扩充等方式对齐问题和文档块之间的语义差异。在检索后阶段则可以通过将检索出来的文档库进行重排序避免 “Lost in the Middle ” 现象的发生。或是通过上下文筛选与压缩的方式缩短窗口长度。

模块化 RAG(Modular RAG)

随着 RAG 技术的进一步发展和演变,新的技术突破了传统的 Naive RAG 检索 — 生成框架,基于此我们提出模块化 RAG 的概念。在结构上它更加自由的和灵活,引入了更多的具体功能模块,例如查询搜索引擎、融合多个回答。技术上将检索与微调、强化学习等技术融合。流程上也对 RAG 模块之间进行设计和编排,出现了多种的 RAG 模式。然而,模块化 RAG 并不是突然出现的,三个范式之间是继承与发展的关系。Advanced RAG 是 Modular RAG 的一种特例形式,而 Naive RAG 则是 Advanced RAG 的一种特例。

图片

图 3 RAG 范式对比图

如何进行检索增强?

RAG 系统中主要包含三个核心部分,分别是 “检索”,“增强” 和 “生成”。正好也对应的 RAG 中的三个首字母。想要构建一个好的 RAG 系统,增强部分是核心,则需要考虑三个关键问题:检索什么?什么时候检索?怎么用检索的内容?

检索增强的阶段:在预训练、微调和推理三个阶段中都可以进行检索增强,这决定了外部知识参数化程度的高低,对应所需要的计算资源也不同。

检索增强的数据源:增强可以采用多种形式的数据,包括非结构化的文本数据,如文本段落、短语或单个词汇。此外,也可以利用结构化数据,比如带有索引的文档、三元组数据或子图。另一种途径是不依赖外部信息源,而是充分发挥 LLMs 的内在能力,从模型自身生成的内容中检索。

检索增强的过程:最初的检索是一次性过程,在 RAG 发展过程中逐渐出现了迭代检索、递归检索以及交由 LLMs 自行判断检索时刻的自适应检索方法。
图片
图 4 RAG 核心组件的分类体系

RAG 和微调应该如何选择?

除了 RAG,LLMs 主要优化手段还包括了提示工程 (Prompt Engineering)、微调 (Fine-tuning,FT)。他们都有自己独特的特点。根据对外部知识的依赖性和模型调整要求上的不同,各自有适合的场景。

图片

RAG 就像给模型一本教科书,用于定制的信息检索,非常适合特定的查询。另一方面,FT 就像一个学生随着时间的推移内化知识,更适合模仿特定的结构、风格或格式。FT 可以通过增强基础模型知识、调整输出和教授复杂指令来提高模型的性能和效率。然而,它不那么擅长整合新知识或快速迭代新的用例。RAG 和 FT,并不是相互排斥的,它们可以是互补的,联合使用可能会产生最佳性能。

图片

图 5 RAG 与其他大模型微调技术对比

如何评价 RAG?

RAG 的评估方法多样,主要包括三个质量评分:上下文相关性、答案忠实性和答案相关性。此外,评估还涉及四个关键能力:噪声鲁棒性、拒答能力、信息整合和反事实鲁棒性。这些评估维度结合了传统量化指标和针对 RAG 特性的专门评估标准,尽管这些标准尚未统一。

在评估框架方面,存在如 RGB 和 RECALL 这样的基准测试,以及 RAGAS、ARES 和 TruLens 等自动化评估工具,它们有助于全面衡量 RAG 模型的表现。表中汇总了如何将传统量化指标应用于 RAG 评估以及各种 RAG 评估框架的评估内容,包括评估的对象、维度和指标,为深入理解 RAG 模型的性能和潜在应用提供了宝贵信息。
图片

图片

未来 RAG 还有哪些发展前景?

RAG 的发展方兴未艾,还有哪些问题值得进一步去研究?我们从三个方面进行展望:

1.RAG 的垂直优化

垂直优化旨在进一步解决 RAG 当前面临的挑战;

长下文长度。检索内容过多,超过窗口限制怎么办 ?如果 LLMs 的上下文窗口不再受限制,RAG 应该如何改进?

鲁棒性。检索到错误内容怎么处理?怎么对检索出来内容进行过滤和验证?怎么提高模型抗毒、抗噪声的能力。

与微调协同。如何同时发挥 RAG 和 FT 的效果,两者怎么协同,怎么组织,是串行、交替还是端到端?

Scaling-Law:RAG 模型是否满足 Scaling Law?RAG 是否会,或是在什么场景下会出现 Inverse Scaling Law 的现象?

LLM 的角色。LLMs 可以用于检索(用 LLMs 的生成代替检索或检索 LLMs 记忆)、用于生成、用于评估。如何进一步挖掘 LLMs 在 RAG 中的潜力?

工程实践。如何降低超大规模语料的检索时延?如何保证检索出来内容不被大模型泄露?

2. RAG 的多模态的拓展

如何将 RAG 不断发展的技术和思想拓展到图片、音频、视频或代码等其他模态的数据中?一方面可以增强单一模态的任务,另一方面可以通过 RAG 的思想将多模态进行融合。

3. RAG 的生态

RAG 的应用已经不仅仅局限于问答系统,其影响力正在扩展到更多领域。现在,推荐系统信息抽取和报告生成等多种任务都开始受益于 RAG 技术的应用。与此同时,RAG 技术栈也在井喷。除了已知的 Langchain 和 LlamaIndex 等工具,市场上涌现出更多针对性的 RAG 工具,例如:用途定制化,满足更加聚焦场景的需求;使用简易化,进一步降低上手门槛的;功能专业化,逐渐面向生产环境。

图片

图 6 RAG 的生态系统概览

更多详细内容,请参考原论文。

理论检索增强生成
4
相关数据
复旦大学机构

复旦大学(Fudan University),简称“复旦”,位于中国上海,由中华人民共和国教育部直属,中央直管副部级建制,国家双一流(A类)、985工程、211工程建设高校,入选珠峰计划、111计划、2011计划、卓越医生教育培养计划、卓越法律人才教育培养计划、国家建设高水平大学公派研究生项目,九校联盟(C9)、中国大学校长联谊会、东亚研究型大学协会、环太平洋大学协会的重要成员,是一所世界知名、国内顶尖的全国重点大学。

相关技术
信息检索技术

信息检索(IR)是基于用于查询检索信息的任务。流行的信息检索模型包括布尔模型、向量空间模型、概率模型和语言模型。信息检索最典型和最常见的应用是搜索引擎。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

知识库技术

知识库是用于知识管理的一种特殊的数据库,以便于有关领域知识的采集、整理以及提取。知识库中的知识源于领域专家,它是求解问题所需领域知识的集合,包括基本事实、规则和其它有关信息。

推荐系统技术

推荐系统(RS)主要是指应用协同智能(collaborative intelligence)做推荐的技术。推荐系统的两大主流类型是基于内容的推荐系统和协同过滤(Collaborative Filtering)。另外还有基于知识的推荐系统(包括基于本体和基于案例的推荐系统)是一类特殊的推荐系统,这类系统更加注重知识表征和推理。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

查询技术

一般来说,查询是询问的一种形式。它在不同的学科里涵义有所不同。在信息检索领域,查询指的是数据库和信息系统对信息检索的精确要求

信息抽取技术

信息/数据抽取是指从非结构化或半结构化文档中提取结构化信息的技术。信息抽取有两部分:命名实体识别(目标是识别和分类真实世界里的知名实体)和关系提取(目标是提取实体之间的语义关系)。概率模型/分类器可以帮助实现这些任务。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

问答系统技术

问答系统是未来自然语言处理的明日之星。问答系统外部的行为上来看,其与目前主流资讯检索技术有两点不同:首先是查询方式为完整而口语化的问句,再来则是其回传的为高精准度网页结果或明确的答案字串。以Ask Jeeves为例,使用者不需要思考该使用什么样的问法才能够得到理想的答案,只需要用口语化的方式直接提问如“请问谁是美国总统?”即可。而系统在了解使用者问句后,会非常清楚地回答“奥巴马是美国总统”。面对这种系统,使用者不需要费心去一一检视搜索引擎回传的网页,对于资讯检索的效率与资讯的普及都有很大帮助。从系统内部来看,问答系统使用了大量有别于传统资讯检索系统自然语言处理技术,如自然语言剖析(Natural Language Parsing)、问题分类(Question Classification)、专名辨识(Named Entity Recognition)等等。少数系统甚至会使用复杂的逻辑推理机制,来区隔出需要推理机制才能够区隔出来的答案。在系统所使用的资料上,除了传统资讯检索会使用到的资料外(如字典),问答系统还会使用本体论等语义资料,或者利用网页来增加资料的丰富性。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

强生机构

强生公司成立于1886年,是全球最具综合性、业务分布范围广的医疗健康企业之一,业务涉及制药、医疗器材及消费品三大领域。强生坚信健康是活力人生、繁荣社区和不断进步的基础。正因如此,130多年来,公司始终致力于推进健康事业,让人们在每个年龄段和每个人生阶段都保持健康。

http://www.jnj.com/
量化技术

深度学习中的量化是指,用低位宽数字的神经网络近似使用了浮点数的神经网络的过程。

同济大学机构
推荐文章
暂无评论
暂无评论~