Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

8x7B MoE与Flash Attention 2结合,不到10行代码实现快速推理

感兴趣的小伙伴,可以跟着操作过程试一试。


前段时间,Mistral AI 公布的 Mixtral 8x7B 模型爆火整个开源社区,其架构与 GPT-4 非常相似,很多人将其形容为 GPT-4 的「缩小版」。

我们都知道,OpenAI 团队一直对 GPT-4 的参数量和训练细节守口如瓶。Mistral 8x7B 的放出,无疑给广大开发者提供了一种「非常接近 GPT-4」的开源选项。

基准测试中,Mistral 8x7B 的表现优于 Llama 2 70B,在大多数标准基准测试上与 GPT-3.5 不相上下,甚至略胜一筹。

图片图片图源:https://mistral.ai/news/mixtral-of-experts/

随着这项研究的出现,很多人表示:「闭源大模型已经走到了结局。」

图片

短短几周的时间,机器学习爱好者 Vaibhav (VB) Srivastav 表示:随着 AutoAWQ(支持 Mixtral、LLaVa 等模型的量化)最新版本的发布,现在用户可以将 Mixtral 8x7B Instruct 与 Flash Attention 2 结合使用,达到快速推理的目的,实现这一功能大约只需 24GB GPU VRAM、不到十行代码。

图片

图源:https://twitter.com/reach_vb/status/1741175347821883502

AutoAWQ 地址:https://github.com/casper-hansen/AutoAWQ

操作过程是这样的:

首先是安装 AutoAWQ 以及 transformers:
pip install autoawq git+https://github. com/huggingface/transformers.git

第二步是初始化 tokenizer 和模型:

图片

第三步是初始化 TextStreamer:

图片

第四步对输入进行 Token 化:

图片

第五步生成:

图片

当你配置好项目后,就可以与 Mixtral 进行对话,例如对于用户要求「如何做出最好的美式咖啡?通过简单的步骤完成」,Mixtral 会按照 1、2、3 等步骤进行回答。

图片

完整过程如下所示:
项目中使用的代码:

图片

Srivastav 表示上述实现也意味着用户可以使用 AWQ 运行所有的 Mixtral 微调,并使用 Flash Attention 2 来提升它们。

看到这项研究后,网友不禁表示:真的很酷。

图片

图片

更多相关链接,请参考:

模型地址:https://huggingface.co/models?search=mixtral%20awq
Transformer 中量化技术:https://huggingface.co/docs/transformers/main/en/quantization
产业Mixtral 8X7BMistral AI
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

量化技术

深度学习中的量化是指,用低位宽数字的神经网络近似使用了浮点数的神经网络的过程。

推荐文章
暂无评论
暂无评论~