Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

思维链如何释放语言模型的隐藏能力?最新理论研究揭示其背后奥秘

思维链提示(CoT)是大模型涌现中最神秘的现象之一,尤其在解决数学推理和决策问题中取得了惊艳效果。CoT到底有多重要呢?它背后成功的机制是什么?本文中,北大的几位研究者证明了CoT在实现大语言模型(LLM)推理中是不可或缺的,并从理论和实验角度揭示了CoT如何释放LLM的巨大潜力。

最近的研究发现,思维链提示(Chain of Thought prompting,简称为 CoT)可以显著提升大语言模型(LLM)的性能,尤其适用于处理涉及数学或推理的复杂任务。不过尽管取得了很大成功,但 CoT 背后的机制以及如何释放 LLM 的潜力仍然难以捉摸。

近日,北京大学的一项新研究从理论视角揭示了 CoT 背后的奥秘。

图片

论文链接:https://arxiv.org/abs/2305.15408

基于 Transformer 的大语言模型已经成为自然语言处理中的通用模型,在各种任务上都获得了广泛的应用。主流的大模型通常基于自回归范式来实现,具体而言,各种不同的任务(如文本翻译、文本生成、问题回答等)都可以统一地视为序列生成问题,其中问题的输入和问题描述被一起被编码为一个单词(token)序列,称为提示(prompt);问题的答案便可以转化为基于提示来条件生成后续单词的任务。

图片

在大模型领域中有大量的研究已经表明,精心设计的提示词对模型的表现起着至关重要的作用。特别是在涉及算术或推理相关的任务时, CoT 已被表明能够大大提高所生成答案的正确性。如下图所示,对于一个需要数学推理的任务,大模型直接生成的答案往往是错误的(下图 a,b)。但是如果通过修改提示使得大模型输出整个思维链(中间推导步骤),最终便能够得到正确答案(下图 c,d)。

图片

在实践中,思维链提示有两种主流的实现方式:一种是在提示中添加特定短语,如 “Let’s think step by step” 来触发(如上图 c);另一种是通过提供少量的思维链演示的例子来让大模型模拟相应的推导过程(如上图 d)。

然而,尽管 CoT 在大量实验上都取得了显著的表现,但背后的理论机制却仍然是个谜。一方面,大模型在直接回答数学、推理等问题方面是否确实存在固有理论缺陷?另一方面,为什么 CoT 可以提升大模型在这些任务上的能力?这篇论文从理论角度对上述问题进行了回答。

具体而言,研究者从模型表达能力的角度来研究 CoT:对于数学任务和一般的决策任务,本文研究了基于自回归的 Transformer 模型在以下两个方面的表达能力:(1)直接生成答案,以及(2)采用 CoT 的方式生成完整的解决步骤。 

CoT 是解决数学问题的关键

以 GPT-4 为代表的大模型已经展现出了令人震惊的数学能力。例如,它能够正确求解大部分高中数学题,甚至已经成为数学家们的研究助手。

为了研究大模型在数学方面的能力,本文选取了两个非常基础但核心的数学任务:算术和方程(下图给出了这两个任务的输入输出示例)。由于它们是解决复杂数学问题的基本组件,因此通过对这两个核心数学问题的研究,我们可以对大模型在一般数学问题上的能力有一个更深刻的理解。

图片

研究者首先探究了 Transformer 是否能够输出上述问题的答案而不输出中间步骤。他们考虑了一种与实际非常吻合的假设 ——log 精度 Transformer,即 Transformer 的每个神经元只能表示有限精度的浮点数(精度为 log n 比特),其中 n 是句子的最大长度。这一假设与实际非常接近,例如在 GPT-3 中,机器精度(16 位或 32 位)通常要远小于最大输出句子长度(2048)。

在这一假设下,研究者证明了一个核心不可能结果:对于常数层、宽度为 d 的自回归 Transformer 模型,以直接输出答案的方式求解上述两个数学问题时,需要使用极大的模型宽度 d。具体而言,d 需要以超越多项式的增长速度随输入长度 n 的增长而变大。

造成这一结果的本质原因在于,上述两个问题不存在高效的并行算法,因此 Transformer 作为一种典型的并行模型无法对其进行求解。文章使用理论计算机科学中的电路复杂性理论对上述定理进行了严格证明。

那么,如果模型不直接输出答案,而是按照上图的形式输出中间推导步骤呢?研究者进一步通过构造证明了,当模型可以输出中间步骤时,一个固定大小(不依赖于输入长度 n)的自回归 Transformer 模型便可以解决上述两个数学问题

对比之前的结果可以看出,加入 CoT 极大地提升了大模型的表达能力。研究者进一步对此给出了直观的理解:这是因为 CoT 的引入会将生成的输出单词不断回馈到输入层,这大大增加了模型的有效深度,使其正比于 CoT 的输出长度,从而极大地提升了 Transformer 的并行复杂度。

CoT 是解决一般决策问题的关键

除了数学问题,研究者进一步考虑了 CoT 在解决一般任务上的能力。他们从决策问题出发,考虑了一种解决决策问题的通用框架,称为动态规划

动态规划(DP)的基本思想在于将复杂问题分解为一系列可以按顺序解决的小规模子问题。其中对问题的分解确保了各个子问题之间存在显著的相互关联(重叠),从而使得每个子问题可以利用之前的子问题上的答案来高效解决。

最长上升子序列(LIS)和求解编辑距离(ED)是《算法导论》一书中提出的两个著名的 DP 问题,下表列出了这两个问题的状态空间、转移函数的聚合函数。

图片

研究者证明了,自回归 Transformer 模型可以按照解决子问题的顺序输出一个完整的动态规划思维链,从而对于所有能够用动态规划解决的任务都能输出正确答案。同样地,研究者进一步证明了生成思维链是必要的:对于很多困难的动态规划问题,一个常数层、多项式大小的 Transformer 模型无法直接输出正确答案。文章通过上下文无关文法成员测试这一问题给出了反例。

实验

研究者最后设计了大量实验对上述理论进行了验证,考虑了四种不同的任务:算术表达式求值、解线性方程组、求解最长上升子序列以及求解编辑距离。

实验结果表明,当使用 CoT 数据进行训练时,一个 3 层的自回归 Transformer 模型已经能够在所有任务上均取得几乎完美的表现。然而,直接输出正确答案在所有任务上的表现都很差(即使使用更深的模型)。这一结果清楚地展示了自回归 Transformer 在解决各种复杂任务上的能力,并表明了 CoT 在解决这些任务中的重要性。

图片

研究者还探究了学得的自回归模型是否可以进一步外推到更长的数据。他们为运算任务构建了一个 CoT 训练数据集,其中运算符数量从 1 到 15,并在算子数量 n ∈ {16, 17, 18} 的表达式上测试模型。结果如下图 3 所示,研究者的三层 Transformer 模型依然在更长的序列上表现良好,表明模型在某种程度上确实学习了底层机制。因此,研究者相信在更多不同长度的数据上训练的模型最终可以揭示完整的算术规则。

图片

理论思维链
相关数据
动态规划技术

动态规划(也称为动态优化),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划将复杂的问题分解成一系列相对简单的子问题,只解决一次子问题并存储它的解决方案(solution),下一次遇到同样的子问题时无需重新计算它的解决方案,而是简单地查找先前计算的解决方案,从而节省计算时间。动态规划适用于有最优子结构(Optimal Substructure)和重叠子问题(Overlapping Subproblems)性质的问题。

上下文无关文法技术

上下文无关文法,在计算机科学中,若一个形式文法 G = 的产生式规则都取如下的形式:V -> w,则谓之。其中 V∈N,w∈* 。上下文无关文法取名为“上下文无关”的原因就是因为字符V 总可以被字串w 自由替换,而无需考虑字符V 出现的上下文。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

自回归模型技术

自回归模型,是统计上一种处理时间序列的方法,自回归模型被广泛运用在经济学、资讯学、自然现象的预测上。

文本生成技术

文本生成是生成文本的任务,其目的是使人类书写文本难以区分。

语言模型技术

统计式的语言模型是借由一个几率分布,而指派几率给字词所组成的字串。语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。

算术技术

算术(英语:arithmetic)是数学最古老且最简单的一个分支,几乎被每个人使用着,从日常生活上简单的算数到高深的科学及工商业计算都会用到。一般而言,算术这一词指的是记录数字某些运算基本性质的数学分支。

北京大学机构

北京大学创办于1898年,初名京师大学堂,是中国第一所国立综合性大学,也是当时中国最高教育行政机关。辛亥革命后,于1912年改为现名。2000年4月3日,北京大学与原北京医科大学合并,组建了新的北京大学。原北京医科大学的前身是国立北京医学专门学校,创建于1912年10月26日。20世纪三、四十年代,学校一度名为北平大学医学院,并于1946年7月并入北京大学。1952年在全国高校院系调整中,北京大学医学院脱离北京大学,独立为北京医学院。1985年更名为北京医科大学,1996年成为国家首批“211工程”重点支持的医科大学。两校合并进一步拓宽了北京大学的学科结构,为促进医学与人文社会科学及理科的结合,改革医学教育奠定了基础。

官网,http://www.pku.edu.cn/
推荐文章
暂无评论
暂无评论~