Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

北大获奖,清华、人大等提名,ICLR 2023杰出论文奖出炉

昨日,ICLR 2023 获奖论文公布!来自北京大学的张博航、罗胜杰、王立威、贺笛获得杰出论文奖,清华大学孔祥哲、中国人民大学高瓴人工智能学院黄文炳、清华大学刘洋获得杰出论文奖提名。

ICLR 全称为国际学习表征会议(International Conference on Learning Representations),今年将举办的是第十一届,将于 5 月 1 日至 5 日在卢旺达首都基加利线下举办。

机器学习社区中,ICLR 是较为「年轻」的顶级学术会议,它由深度学习巨头、图灵奖获得者 Yoshua Bengio 和 Yann LeCun 牵头举办,2013 年才刚刚举办第一届。不过 ICLR 很快就获得了学术研究者们的广泛认可,被认为是深度学习的顶级会议。在 Google Scholar 的学术会议 / 杂志排名中,ICLR 目前排名第十位,要高于 NeurIPS。

据今年 2 月份公布的接收数据,在今年的接收统计中, ICLR 共接收近 5000 篇投稿,整体接收率为 31.8%,接近于去年的 32.26%。今年还有一个变化是接收论文的 tag 会有两个,一个是论文类型(oral、spotlight、poster),另一个是 presentation 的方式。

位于 top5% 论文内容涉及 Transformer、in-context learning、扩散模型等内容。

在近日公布的获奖论文中,共有 4 篇论文获得杰出论文奖,5 篇论文获得杰出论文奖提名。其中,来自北京大学的张博航、罗胜杰、王立威,、贺笛共同获得一篇杰出论文奖,清华大学孔祥哲、中国人民大学高瓴人工智能学院黄文炳、清华大学刘洋共同获得一篇杰出论文奖提名。

杰出论文奖

  • 论文 1:Universal Few-shot Learning of Dense Prediction Tasks with Visual Token Matching

  • 作者:Donggyun Kim, Jinwoo Kim, Seongwoong Cho, Chong Luo, Seunghoon Hong
  • 机构:KAIST、微软亚研
  • 论文链接:https://openreview.net/pdf?id=88nT0j5jAn

该论文提出了一种用于密集预测任务的少样本学习 pipeline,密集预测任务包括语义分割、深度估计、边缘检测和关键点检测等。该研究提出了一个简单的统一模型,可以处理所有密集预测任务,并包含多项关键创新。该研究将激发密集预测的进一步发展,所提方法 —— 例如视觉 token 匹配、情景(episodic)元学习 —— 可以用于相关的多任务学习问题。

  • 论文 2:Rethinking the Expressive Power of GNNs via Graph Biconnectivity
  • 作者:张博航, 罗胜杰, 王立威, 贺笛
  • 机构:北京大学
  • 论文链接:https://openreview.net/pdf?id=r9hNv76KoT3

该论文基于双连通性(biconnectivity)提出一种 GNN 表达性度量新指标。具体来说,该研究提出了一种利用节点间距离的新算法,并在合成数据和真实数据中进行了演示。该研究表明:双连通性问题在理论和实践中都有着广泛的潜在应用。 

  • 论文 3:DreamFusion: Text-to-3D using 2D Diffusion
  • 作者:Ben Poole, Ajay Jain, Jonathan T. Barron, Ben Mildenhall
  • 机构:谷歌研究院、加州大学伯克利分校
  • 论文链接:https://openreview.net/pdf?id=FjNys5c7VyY

该论文提出了一种基于文本生成 3D 模型的有效方法,而无需 3D 模型作为训练数据。该论文的关键思想是利用本生成图像的扩散模型,并通过将误差信号反向传播到 3D 模型的神经辐射场来生成 3D 模型。该方法是 SOTA 图像生成和 3D 建模的巧妙组合,在实践中效果极好,并将启发各种后续工作,包括基于文本的 3D 视频生成
 
  • 论文 4:Emergence of Maps in the Memories of Blind Navigation Agents
  • 作者:Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, Dhruv Batra
  • 机构:佐治亚理工学院、Meta AI 等
  • 论文链接:https://openreview.net/pdf?id=lTt4KjHSsyl

该论文基于认知科学和机器学习的跨学科方法,让仅具备自我运动(egomotion)(不具备其他任何感知)的导航智能体学得有效表征,并实现有效导航。该研究对表征学习具有重要意义。

杰出论文奖提名

除了 4 篇杰出论文,ICLR 2023 还有 5 篇论文获得杰出论文奖提名。

  • 论文 1:Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
  • 作者:Zeyuan Allen-Zhu, Yuanzhi Li
  • 机构:Meta、MBZUAI
  • 论文链接:https://openreview.net/pdf?id=Uuf2q9TfXGA

该论文试图从一个新的理论视角来理解知识蒸馏。作者认为对于自然的多视图结构,没有蒸馏的情况下神经网络只能训练为仅依赖于部分特征,而蒸馏可以缓解这个问题。这篇论文提供了证明这一点的简化示例,有助于人们更好地理解知识蒸馏的有效性。

  • 论文 2:Mastering the Game of No-Press Diplomacy via Human-Regularized Reinforcement Learning and Planning
  • 作者:Anton Bakhtin, David J Wu, Adam Lerer, Jonathan Gray, Athul Paul Jacob, Gabriele Farina, Alexander H Miller, Noam Brown
  • 机构:Meta AI、MIT
  • 论文链接:https://openreview.net/pdf?id=F61FwJTZhb

该论文的主题是多回合、多阶段、多人游戏的算法开发,提出使用一种类似于自我对弈(self-play)的策略来找到游戏均衡(equilibrium)状态,并在一个受人类玩家欢迎的复杂多人棋盘游戏上测试了该算法。其中,将寻求平衡的策略与行为克隆相结合。

  • 论文 3:On the duality between contrastive and non-contrastive self-supervised learning
  • 作者:Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, Yann LeCun
  • 机构:Meta AI 等
  • 论文链接:https://openreview.net/pdf?id=kDEL91Dufpa

自监督学习领域,各种方法似乎没有任何共同点,但在实践中却表现相似。该论文对各种自监督学习方法进行了分析探究,发现了它们的共同点。该论文展开研究了一些流行的自监督学习方法,证明其提出的理论能用于实际方法。这篇论文对自监督学习领域具有重要意义。

  • 论文 4:Conditional Antibody Design as 3D Equivariant Graph Translation
  • 作者:孔祥哲,黄文炳,刘洋
  • 机构:清华大学计算机系,清华大学智能产业研究院,中国人民大学高瓴人工智能学院,北京智源人工智能研究院
  • 论文链接:https://openreview.net/pdf?id=LFHFQbjxIiP

抗体设计是药物研发的一个重要问题,具有重要的应用前景。本文提出一种基于等变图神经网络的抗体设计方法 MEAN,在给定抗原、抗体重链和轻链的条件下,实现了抗体 CDRs 的设计和优化。与以往方法不同,MEAN 不但考虑了更全的「上下文信息」,而且能直接生成抗体 CDRs 的 1D 氨基酸序列及其 3D 构象,具有更高效率。在多个数据集的完整实验上,MEAN 显著优于已有方法。论文有望为后续湿实验研究提供一种高效的算法工具。

  • 论文 5:Disentanglement with Biological Constraints: A Theory of Functional Cell Types
  • 作者:James C. R. Whittington, Will Dorrell, Surya Ganguli, Timothy Behrens
  • 机构:斯坦福大学、牛津大学、UCL
  • 论文链接:https://openreview.net/pdf?id=9Z_GfhZnGH

该研究受生物学启发,揭示了机器学习神经科学之间有趣的联系,并从数学上证明机器学习中的约束会导致线性网络解缠结(disentanglement)。该研究还通过实验表明,相同的约束对于非线性情况也是有效的。总的来说,这项研究从数学的角度对单个神经元和大脑结构给出了更深层的理解。

参考链接:https://blog.iclr.cc/2023/03/21/announcing-the-iclr-2023-outstanding-paper-award-recipients/
理论ICLR
1
相关数据
清华大学机构

清华大学(Tsinghua University),简称“清华”,由中华人民共和国教育部直属,中央直管副部级建制,位列“211工程”、“985工程”、“世界一流大学和一流学科”,入选“基础学科拔尖学生培养试验计划”、“高等学校创新能力提升计划”、“高等学校学科创新引智计划”,为九校联盟、中国大学校长联谊会、东亚研究型大学协会、亚洲大学联盟、环太平洋大学联盟、清华—剑桥—MIT低碳大学联盟成员,被誉为“红色工程师的摇篮”。 清华大学的前身清华学堂始建于1911年,因水木清华而得名,是清政府设立的留美预备学校,其建校的资金源于1908年美国退还的部分庚子赔款。1912年更名为清华学校。1928年更名为国立清华大学。1937年抗日战争全面爆发后南迁长沙,与北京大学、南开大学组建国立长沙临时大学,1938年迁至昆明改名为国立西南联合大学。1946年迁回清华园。1949年中华人民共和国成立,清华大学进入了新的发展阶段。1952年全国高等学校院系调整后成为多科性工业大学。1978年以来逐步恢复和发展为综合性的研究型大学。

http://www.tsinghua.edu.cn/
相关技术
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

神经科学技术

神经科学,又称神经生物学,是专门研究神经系统的结构、功能、发育、演化、遗传学、生物化学、生理学、药理学及病理学的一门科学。对行为及学习的研究都是神经科学的分支。 对人脑研究是个跨领域的范畴,当中涉及分子层面、细胞层面、神经小组、大型神经系统,如视觉神经系统、脑干、脑皮层。

元学习技术

元学习是机器学习的一个子领域,是将自动学习算法应用于机器学习实验的元数据上。现在的 AI 系统可以通过大量时间和经验从头学习一项复杂技能。但是,我们如果想使智能体掌握多种技能、适应多种环境,则不应该从头开始在每一个环境中训练每一项技能,而是需要智能体通过对以往经验的再利用来学习如何学习多项新任务,因此我们不应该独立地训练每一个新任务。这种学习如何学习的方法,又叫元学习(meta-learning),是通往可持续学习多项新任务的多面智能体的必经之路。

表征学习技术

在机器学习领域,表征学习(或特征学习)是一种将原始数据转换成为能够被机器学习有效开发的一种技术的集合。在特征学习算法出现之前,机器学习研究人员需要利用手动特征工程(manual feature learning)等技术从原始数据的领域知识(domain knowledge)建立特征,然后再部署相关的机器学习算法。虽然手动特征工程对于应用机器学习很有效,但它同时也是很困难、很昂贵、很耗时、并依赖于强大专业知识。特征学习弥补了这一点,它使得机器不仅能学习到数据的特征,并能利用这些特征来完成一个具体的任务。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

边缘检测技术

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。 边缘检测是图像处理和计算机视觉中,尤其是特征检测中的一个研究领域。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

图神经网络技术

图网络即可以在社交网络或其它基于图形数据上运行的一般深度学习架构,它是一种基于图结构的广义神经网络。图网络一般是将底层图形作为计算图,并通过在整张图上传递、转换和聚合节点特征信息,从而学习神经网络基元以生成单节点嵌入向量。生成的节点嵌入向量可作为任何可微预测层的输入,并用于节点分类或预测节点之间的连接,完整的模型可以通过端到端的方式训练。

语义分割技术

语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类。图像语义分割是AI领域中一个重要的分支,是机器视觉技术中关于图像理解的重要一环。

知识蒸馏技术

Hinton 的工作引入了知识蒸馏压缩框架,即通过遵循“学生-教师”的范式减少深度网络的训练量,这种“学生-教师”的范式,即通过软化“教师”的输出而惩罚“学生”。为了完成这一点,学生学要训练以预测教师的输出,即真实的分类标签。这种方法十分简单,但它同样在各种图像分类任务中表现出较好的结果。

多任务学习技术

文本生成技术

文本生成是生成文本的任务,其目的是使人类书写文本难以区分。

自监督学习技术

一个例子中的内容特别多,而用一个例子做一个任务,就等于把其他的内容浪费了,因此我们需要从一个样本中找出多个任务。比如说遮挡图片的一个特定部分,用没遮挡部分来猜遮挡的部分是一个任务。那么通过遮挡不同的部分,就可以用一个样本完成不同任务。Yann Lecun描述的这个方法被业界称作「自监督学习」

视频生成技术

视频生成是指利用深度学习等技术生成视频的任务。

北京大学机构

北京大学创办于1898年,初名京师大学堂,是中国第一所国立综合性大学,也是当时中国最高教育行政机关。辛亥革命后,于1912年改为现名。2000年4月3日,北京大学与原北京医科大学合并,组建了新的北京大学。原北京医科大学的前身是国立北京医学专门学校,创建于1912年10月26日。20世纪三、四十年代,学校一度名为北平大学医学院,并于1946年7月并入北京大学。1952年在全国高校院系调整中,北京大学医学院脱离北京大学,独立为北京医学院。1985年更名为北京医科大学,1996年成为国家首批“211工程”重点支持的医科大学。两校合并进一步拓宽了北京大学的学科结构,为促进医学与人文社会科学及理科的结合,改革医学教育奠定了基础。

官网,http://www.pku.edu.cn/
推荐文章
暂无评论
暂无评论~