Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

机器之心编辑部机器之心报道

本科生60行代码教你手搓GPT大模型,技术介绍堪比教程

GPT 模型实现起来有时也很简单。

当前,大型语言模型(LLM)被认为是人工智能突破的方向。人们正在尝试用它们做各种复杂的事情,比如问答、创作、数学推理以及编写代码等。近段时间 ChatGPT 持续的爆火是最好的例证。

然而,对于机器学习从业者来说,大模型的门槛很高:因为体量太大难以训练,很长时间里这个方向一直被大公司垄断。不过最近,简化 GPT 模型的方法越来越多了。1 月中旬,前特斯拉 AI 高级总监 Andrej Karpathy(现已回归 OpenAI)就发布了从零开始构建 GPT 模型的完整教程。不过训练出的 GPT 和 OpenAI 的 GPT-3 比较,两者规模差距达 1 万 - 100 万倍。

近日,加拿大麦克马斯特大学的一位软件工程本科生 Jay Mody 在导入 NumPy 库下,仅用 60 行代码就从头实现了一个 GPT 模型,并将其命名为 PicoGPT。不仅如此,他还将经过训练的 GPT-2 模型权重加载到自己的实现中,并生成了一些文本。下面为 60 行代码展示。

图片

不过要做到这些,你需要熟悉 Python 和 NumPy,还要有一些训练神经网络的基本经验。作者表示,这篇博客旨在对 GPT 进行简单易懂的完整介绍。因此,作者只使用已经训练的模型权重来实现前向传递代码。

图片

代码地址:
https://github.com/jaymody/picoGPT/blob/29e78cc52b58ed2c1c483ffea2eb46ff6bdec785/gpt2_pico.py#L3-L58

对于此项研究,Andrej Karpathy 给出了四个字:虽迟但到。想当初,Karpathy 构建的 minGPT 和 nanoGPT 还要 300 行代码。
图片
值得一提的是,这篇教程不是完全零门槛的。为了让读者明白,作者首先介绍了什么是 GPT、它的输入、输出如何等其他内容,介绍得都非常详细。
图片
至于 GPT 到底能干什么,作者给出了几个示例,它能写电子邮件、总结一本书、给你 instagram 标题的想法、向 5 岁的孩子解释黑洞、用 SQL 编写代码等。

通过仔细阅读这部分内容后,你能大致了解 GPT 的一些基础知识。有了这些背景介绍,接下来就是如何设置了。

项目介绍
设置

这一章节主要介绍了如何设置编码器、超参数以及参数。

图片
你要做的,首先是克隆代码库:
图片
然后安装依赖项:
图片
注意,如果你使用的是 M1 Macbook,在运行 pip install 之前,你需要在 requirements.txt 中将 tensorflow 更改为 tensorflow-macos。在这个项目下,文件包括 encoder.py、utils.py、gpt2.py、gpt2_pico.py:

  • encoder.py:包含 OpenAI BPE Tokenizer 的代码,直接取自 gpt-2 repo;
  • utils.py:包含下载和加载 GPT-2 模型权重、tokenizer 和超参数的代码;
  • gpt2.py:包含 GPT 模型和生成代码,可以将其作为 python 脚本运行;
  • gpt2_pico.py:与 gpt2.py 相同,但是代码行数更少。

其中 gpt2.py 需要从头开始实现,因此你要做的是先删除 gpt2.py 并重新创建一个空文件:
图片
然后将下列代码复制到 gpt2.py 中:
图片
上述代码包含 4 个主要部分:

  • gpt2 函数是本次实现 GPT 的实际代码;
  • generate 函数实现自回归解码算法;
  • main 函数;
  • fire.Fire (main) 将文件转换为 CLI 应用程序,以便最终可以运行代码:python gpt2.py "some prompt here"。

main 函数包含有 encode、hparams、params 参数,执行下列代码:
图片
接着必要的模型以及 tokenizer 文件将被下载到 models/124M 文件。

设置完成之后,作者开始介绍编码器、超参数、参数的一些细节内容。就拿编码器来说,本文的编码器和 GPT-2 使用的 BPE tokenizer 一样。下面是该编码器编码和解码的一些文本示例:
图片
实际的 token 长这个样子:
图片
需要注意,有时 token 是单词(例如 Not),有时它们是单词但前面有一个空格(例如 Ġall,Ġ 代表一个空格),有时是单词的一部分(例如 capes 被拆分为 Ġcap 和 es),有时它们是标点符号(例如 .)。

BPE 的一个好处是它可以对任意字符串进行编码,如果遇到词汇表中不存在的内容,它会将其分解为它能理解的子字符串:
图片
更细节的内容不再赘述。接下来介绍基础神经网络,这一部分就更加基础了,主要包括 GELU、Softmax 函数以及 Layer Normalization 和 Linear。

图片

每一小部分都有代码示例,例如在 Linear 部分,作者展示了标准矩阵乘法 + 偏置:

图片

线性层从一个向量空间投影到另一个向量空间的代码如下:
图片
GPT 架构

这部分介绍 GPT 自身架构。
图片

Transformer 架构如下:
图片
Transformer 仅使用解码器堆栈(图的右侧部分):
图片
需要注意,由于摆脱了编码器,中间的交叉注意力层也被删除了。

在高层次上,GPT 体系架构有以下三个部分:

  • 文本 + 位置嵌入;
  • Transformer 解码器堆栈;
  • 投影到词汇表。

代码就像下面这样:

图片
代码部分截图

接下来更详细地分解以上三个部分中的每一个部分,这里也不再赘述。

以上就是作者对 GPT 的实现,接下来就是将它们组合在一起并运行代码,得到 gpt2.py。它的全部内容只有 120 行代码(如果删除注释和空格,则为 60 行)。

作者通过以下方式测试结果:
图片
输出结果如下:
图片
正如作者说的:这次实验成功了。

本文只是跟着作者的思路大概介绍了整体流程,想要了解更多内容的小伙伴,可以参考原文链接。

原文链接:https://jaykmody.com/blog/gpt-from-scratch/#basic-layers




理论复现GPT
1
相关数据
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

GPT-2技术

GPT-2是OpenAI于2019年2月发布的基于 transformer 的大型语言模型,包含 15 亿参数、在一个 800 万网页数据集上训练而成。据介绍,该模型是对 GPT 模型的直接扩展,在超出 10 倍的数据量上进行训练,参数量也多出了 10 倍。在性能方面,该模型能够生产连贯的文本段落,在许多语言建模基准上取得了 SOTA 表现。而且该模型在没有任务特定训练的情况下,能够做到初步的阅读理解、机器翻译、问答和自动摘要。

推荐文章
暂无评论
暂无评论~