Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

泽南、杜伟编辑

三次元的文本到图像AI成了:单GPU不到一分钟出货,OpenAI出品

文本到 3D 模型生成的速度一下提升了 600 倍,代码也已开源。

文本生成图像的 AI 最近已经火到了圈外,不论是 DALL-E 2、DeepAI 还是 Stable Diffusion,人人都在调用 AI 算法搞绘画艺术,研究对 AI 讲的「咒语」。不断进化的技术推动了文生图生态的蓬勃发展,甚至还催生出了独角兽创业公司 Stability AI。


技术发展的脚步并没有停止,下个突破可能是 3D 模型生成了:本周,OpenAI 开源的 3D 模型生成器 Point-E 引发了 AI 圈的新一轮热潮,刚摆上 GitHub 一天就获得了 800 多个 star。


根据与开源内容一并发布的论文介绍,Point-E 可以在单块 Nvidia V100 GPU 上在一到两分钟内生成 3D 模型。相比之下,现有系统(如谷歌的 DreamFusion)通常需要数小时和多块 GPU。


论文《Point-E: A System for Generating 3D Point Clouds from Complex Prompts》:



  • 论文链接:https://arxiv.org/abs/2212.08751

  • 项目链接:https://github.com/openai/point-e


Point-E 不输出传统意义上的 3D 图像,它会生成点云,或空间中代表 3D 形状的离散数据点集。Point-E 中的 E 是「效率」的缩写,表示其比以前的 3D 对象生成方法更快。不过从计算的角度来看,点云更容易合成,但它们无法捕获对象的细粒度形状或纹理 —— 这是目前 Point-E 的一个关键限制。


为了解决这一问题,OpenAI 团队训练了一个额外的人工智能系统来将 Point-E 的点云转换为网格。



Point-E 架构及运行原理


在独立的网格生成模型之外,Point-E 主要由两个模型组成:文本到图像模型和图像到 3D 模型。文本到图像模型类似于 OpenAI 自家的 DALL-E 2 和 Stable Diffusion 等生成模型系统,在标记图像上进行训练以理解单词和视觉概念之间的关联。在图像生成之后,图像到 3D 模型被输入一组与 3D 对象配对的图像,训练出在两者之间有效转换的能力。



当人们给出一个文本提示 —— 例如,「一个可 3D 打印的齿轮,一个直径为 3 英寸、厚度为半英寸的齿轮」时,AI 会生成符合描述的内容:



Point-E 通过 30 亿参数的 GLIDE 模型生成综合视图渲染,内容被馈送到图像到 3D 模型,通过一系列扩散模型运行生成的图像,以创建初始图像的 3D RGB 点云 —— 先生成粗略的 1024 点云模型,然后生成更精细的 4096 点云模型。


Point-E 的点云扩散模型架构。图像通过一个冻结的、预训练的 CLIP 模型输入,输出网格作为标记输入到 transformer 中。

 

OpenAI 研究人员表示,在经过「数百万 3D 对象和相关元数据的数据集上训练模型后,Point-E 拥有了生成匹配文本提示的彩色点云的能力。Point-E 的问题和目前的生成模型一样,图像到 3D 转换过程中有时无法理解文本叙述的内容,导致生成的形状与文本提示不匹配。尽管如此,根据 OpenAI 团队的说法,它仍然比以前的最先进技术快几个数量级。


Point-E 将点云转换为网格。


OpenAI 在论文中表示,「虽然 Point-E 在评估中表现得比 SOTA 方法差,但它只用了后者一小部分的时间就可以生成样本。这使得 Point-E 对某些应用程序更实用,或者可以利用效率获得更高质量的 3D 对象。」


应用前景及版权问题


也许你会问,Point-E 具体有哪些应用呢?OpenAI 研究人员指出,Point-E 的点云可用于制作真实世界的对象,比如通过 3D 打印制作。再加上额外的网格转换模型,系统在完善后可以用于游戏和动画开发工作流程。


OpenAI 可能是最新一家涉足 3D 对象生成器领域的公司,但它并不是第一家。今年早些时候,谷歌就发布了 DreamFusion,它是谷歌 2021 年推出的生成式 3D 系统 Dream Fields 的扩展版本。


虽然当前所有目光都集中在 2D 艺术生成器上,但模型合成 AI 可能是下一个重大的行业颠覆者。现代电影、视频游戏、VR 和 AR 的 CGI 效果、空间探索中的测绘任务、古迹遗址保护项目以及 Meta 等科技公司的元宇宙愿景都需要高性能的 3D 建模能力。在传统行业中,建筑公司也会使用 3D 模型演示建筑物和景观,工程师会利用模型设计新设备、车辆和结构等。


Point-E 失败的案例。


不过,制作 3D 模型通常需要一段时间,从几小时到几天不等。如果有一天解决了这一问题,像 Point-E 这样的 AI 可以改变很多,并让 OpenAI 获得可观的利润。


潜在的问题是可能会产生知识产权纠纷。3D 模型有很大的市场,包括 CGStudio 和 CreativeMarket 在内的几个在线市场允许艺术家销售他们创建的内容。如果 Point-E 流行起来并投放到市场,模型艺术家们可能会抗议,并拿出现代生成式 AI 严重依赖其自身训练数据的证据,比如 Point-E 中有现成的 3D 模型。


与 DALL-E 2 一样,Point-E 不承认也没有引用任何可能影响其代代发展的艺术家的作品。OpenAI 没有明确地说明这一问题,Point-E 论文及相应 GitHub 项目中也都没有提到版权问题。


最后,OpenAI 研究人员预计 Point-E 还面临着一些挑战,例如训练数据存在的偏差以及对可能用于创建「危险对象」的模型缺乏保护措施。因此,OpenAI 谨慎地将 Point-E 描述为一个起点,并希望激励文本到 3D 合成领域进一步发展。


不过按照 AI 作画发展的速度,我们或许很快就会看见下一轮技术爆发了。


参考内容:

https://www.engadget.com/openai-releases-point-e-dall-e-3d-text-modeling-210007892.html

https://techcrunch.com/2022/12/20/openai-releases-point-e-an-ai-that-generates-3d-models/

理论3D建模OpenAI
1
相关数据
人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

生成模型技术

在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。 它给观测值和标注数据序列指定一个联合概率分布。 在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。

文本生成技术

文本生成是生成文本的任务,其目的是使人类书写文本难以区分。

推荐文章
暂无评论
暂无评论~