Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

无需新型token mixer就能SOTA:MetaFormer视觉基线模型开源,刷新ImageNet记录

来自新加坡国立大学和 Sea AI Lab 的研究者开源了四种 MetaFormer 基线模型,通过使用最基本或者最常见的 token mixer,探索了 MetaFormer 的下限、通用性和潜力。值得注意的是,所提模型之一 CAFormer 基于 ImageNet 常规有监督训练(无额外数据和蒸馏),在 224x224 分辨率上取得 85.5% 的新纪录,相比之前的 SOTA 模型减少了 55% 的参数量和 45% 的计算量。此外,该团队所提出的激活函数StarReLU比常用的GELU减少了71%的计算量,但取得了更好的性能。

图片

  • 论文地址:https://arxiv.org/abs/2210.13452

  • 代码地址:https://github.com/sail-sg/metaformer 

*This work was partially performed when W. Yu was a research intern at Sea AI Lab.

去年,该团队的一篇论文《MetaFormer Is Actually What You Need for Vision》引起研究社区关注。该论文针对 Transformer 模型 “Attention is all you need” 的观点提出了不同看法,即 MetaForemr 猜想 “MetaFormer Is Actually What You Need”。该论文通过把 attention 模块抽象成 token mixer,从而将 Transformer 抽象成通用架构 MetaFormer。为了验证 MetaFormer 猜想,作者把 token mixer 设置为极为简单的池化算子,发现所得模型 PoolFormer 性能居然超过了 ViT/MIL-like/ResNet 等模型,实验结果很好地验证了 MetaFormer 猜想。


图片

图源:该团队去年的论文《MetaFormer Is Actually What You Need for Vision》(CVPR 2022 Oral)

最近,该团队再次进一步探究通用架构 MetaFormer 的各种性质:他们在 MetaFormer 框架下,通过使用最基本或者最常见的 token mixer,引入了几种 MetaFormer 基线模型,并总结了他们的观察。

1.MetaFormer 确保可靠的性能下限。

为了探索模型的性能下限,作者将 token mixer 设定为恒等映射。实验发现,这个名为 IdentityFormer 的简陋模型,在 ImageNet 上竟然能取得超过 80% 的准确率

2. MetaFormer 使用任意 token mixer 也能工作。 

为了探索 MetaFormer 对于 token mixer 的通用性,作者使用全局随机矩阵(随机初始化后固定住)来混合 token。具体地,对于四阶段模型,作者将后两阶段的 token mixer 设置为随机混合,而前两阶段的 token mixer 仍然保持为恒等映射,以避免引入过多计算量和固定参数。所派生的 RandFormer 模型被证明是有效的,准确率相比 IdentityFormer 提高了 1.0%,为 81.4%。这一结果证明 MetaFormer 对于 token mixer 有很好的通用性。因此,当引入新奇的 token mixer 时,请放心 MetaFormer 的性能。

图 1:MetaFormer 基线模型和其他最先进模型在 ImageNet  224x224 分辨率上的性能。 该论文所提模型的具体架构展示在后续的图 2 中。(a) IdentityFormer/RandFormer 取得超过 80%/81% 的准确率,表明 MetaFormer 具有可靠的性能下限,并且使用任意 token mixer 都能很好地工作。图中 ResNet-50 的准确率来自论文《ResNet strikes back》。(b) 使用经典可分离卷积做为 token mixer 的 ConvFormer (可视为纯 CNN)大幅优于 ConvNeXt,而使用可分离卷积和原始 self-attention 作为 token mixer 的 CAFormer 在常规有监督训练下(无额外数据和蒸馏),在 ImageNet 224x224 分辨率上创造了 85.5% 准确率的新记录。


图片

图 2:(a-d)IdentityFormer、RandFormer、ConvFormer 和 CAFormer 的总体框架。与 ResNet 类似,模型采用四阶段架构,阶段 i 具有特征维度为 Di 的 Li 个 block。每个下采样模块由一层卷积实现。第一个下采样的 kernel 大小为 7,stride 为 4,而后三个下采样的 kernel 大小为 3,stride 为 2。(e-h) IdentityFormer、RandForemr、ConvFormer 和 Transformer block 的架构,它们的 token mixer 分别为恒等映射,随机混合,可分离卷积和原始 self-attention。

3. MetaFormer 轻松地提供 SOTA 性能。无需设计新的 token mixer,仅需装备五年前的 “老式” 算子,所衍生的 MetaFormer 具体模型就实现了 SOTA。

ConvFormer 大幅优于 ConvNeXt。通过简单地将 token mixer 设定为可分离卷积,所衍生的纯卷积模型 ConvFormer 性能大幅优于 ConvNeXt。

CAFormer 刷新 ImageNet 记录。通过将四阶段模型的前两个阶段的 token mixer 设置为可分离卷积,后两个阶段设置为原始的 self-attention,所衍生模型 CAFormer 在 ImageNet 无额外数据常规有监督训练下,在 224x224 分辨率上创造 85.5% 准确率的新纪录。


图片

图 3:各种先进模型(图中 Swin 都成了垫底)在 ImageNet 224x224 上准确率、计算量和模型规模的比较。□、△和○分别代表 CNN 类,attention 类和混合类模型。在各个维度的计算量和模型规模下,ConvFormer 均优于同类 CNN 模型;CAFormer 明显优于其他各类模型。值得注意的是 CAFormer 取得新的准确率记录 85.5%,不仅超过之前 MViTv2 取得的 85.3% 的记录,还比 MViTv2 减少了 55% 的参数量和 45% 的计算量。

4. 新型激活函数 StarReLU 超越 GELU。此外,作者还提出了新型激活函数 StarReLU 用以取代常用的 GELU 激活函数。该函数为平方 ReLU 的变体,为消除分布偏移而设计。StarReLU 每个神经元仅需 4 FLOPs,相比 GELU (14 FLOPs)减少了 71% 的计算量,却取得更好的性能。ConvFormer-S18 模型在 ImageNet 数据集上,使用 StarReLU 相比 GELU 准确率提升 0.3%,相比 ReLU 提升了 0.9%。

图片

其中 s 和 b 为所有通道共享的标量,可设为固定值或者可学参数

以上作者通过将 token mixer 设置为最基本或者最常见的算子(恒等映射、随机混合、可分离卷积和原始 self-attenton)来进一步探索 MetaFormer 架构的下限、通用性和潜力。所提各种 MetaFormer 模型可作为视觉领域可靠的基线。相信当引入更先进 token mixer 或者训练策略时,MetaFormer 类模型会打破记录,取得新的 SOTA。

理论计算机视觉
相关数据
池化技术

池化(Pooling)是卷积神经网络中的一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效的原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。

激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

推荐文章
暂无评论
暂无评论~