首先,游戏任务与自然语言处理任务非常不同,因此如何明确训练目标是大模型的关键步骤;
其次,由于游戏难易程度不同,如何设计合适的训练机制比较困难。训练方法应该能够处理各种游戏并确保学习不会退化。
Auto Byte
专注未来出行及智能汽车科技
微信扫一扫获取更多资讯
Science AI
关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展
微信扫一扫获取更多资讯
游戏中的人工智能所面临的技术、挑战和机遇。
首先,游戏任务与自然语言处理任务非常不同,因此如何明确训练目标是大模型的关键步骤;
其次,由于游戏难易程度不同,如何设计合适的训练机制比较困难。训练方法应该能够处理各种游戏并确保学习不会退化。
DeepMind 提出的 AlphaZero 不仅征服了围棋,也在将棋、国际象棋等复杂游戏中实现了超越人类的表现。DeepMind 推出的 AlphaGo 曾在围棋项目中取得了超越人类的表现,其研究曾经两次登上 Nature。2018 年 12 月,AlphaGo 的「完全自我博弈加强版」AlphaZero 的论文又登上另一大顶级期刊 Science 的封面。在论文中,AlphaZero 不仅征服了围棋,也在将棋、国际象棋等复杂游戏中实现了超越人类的表现。
在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)
强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。
通用人工智能(AGI)是具有一般人类智慧,可以执行人类能够执行的任何智力任务的机器智能。通用人工智能是一些人工智能研究的主要目标,也是科幻小说和未来研究中的共同话题。一些研究人员将通用人工智能称为强AI(strong AI)或者完全AI(full AI),或称机器具有执行通用智能行为(general intelligent action)的能力。与弱AI(weak AI)相比,强AI可以尝试执行全方位的人类认知能力。
AlphaStar是2019年1月DeepMind推出的打星际争霸2的AI系统。在1月的首次亮相中,DeepMind播放的比赛视频显示AlphaStar击败了两名人类职业选手TOL与MaNa,引起了业内极大的关注。DeepMind 官方博客介绍,AlphaStar 的行为是由一种深度神经网络生成的,该网络从原数据界面(单位列表与它们的特性)接收输入数据,输出构成游戏内行为的指令序列。具体来说,该神经网络使用了一个 transformer 作为躯干,结合了一个深度 LSTM 核、一个带有 pointer 网络的自动回归策略 head 以及一个中心价值基线。