Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

陈萍机器之心报道

一天狂揽2000+星,微软面向初学者ML课程来了,完全免费

适合所有初学者的经典机器学习课程。

微软机器学习课程(Machine Learning for Beginners, Curriculum)来了,一天之内狂揽 2000 + 星。

课程地址:https://github.com/microsoft/ML-For-Beginners

该课程面向机器学习初学者,总共 12 周、24 节课,完全免费,已经过 MIT 授权。由 Azure 云倡导者等人员制作而成。

这门课程都是关于「经典机器学习」的,使用 Scikit-learn 库来处理 ML 基本概念。不过本次 ML 课程中不讨论深度学习或神经网络相关内容。

Scikit-learn 库:https://scikit-learn.org/stable/user_guide.html

这门课程涉及到的算法都有具体的示例,包括回归(北美南瓜市场定价示例)、分类(泛亚洲菜系示例)、聚类(尼日利亚音乐品味示例)、NLP(欧洲酒店评论示例)、时间序列(世界用电量示例),强化学习(俄罗斯关于彼得和狼的故事)。

这是一门自学课程,但它在以小组为单位的学习中效果很好,因此你可以考虑寻找学习伙伴并一起学习。通过课前测验热身,和小伙伴一起或单独完成课程和作业。通过课后测验测试自己掌握的知识。学习这门课之前,最好掌握 Python。

有网友表示:真了不起。

还有网友赞叹该课程是非常好的资料。


学完本次课程,你将学到什么?

这些课程是分组进行的,这样有利于学习者深入研究经典 ML 的各个重要方面。

该课程首先介绍了 ML 概念,然后到它的发展历史,机器学习中关于「fairness」概念,并讨论了 ML 行业的工具和技术。

之后的课程介绍了回归、分类、聚类、自然语言处理、时间序列预测强化学习,其中两个「applied,应用」课程演示了如何在网络中使用模型以用于推理的应用程序。最后以「postscript」课程结束,列出了机器学习在「真实世界」的应用,展示了这些技术是如何在自然环境下使用的。

每节课程包括:课前热身测验、编程课程、以项目为基础的课程指导如何构建项目、检查所学知识、课程挑战、补充阅读、分配任务、课后测验等。

课程目录:

为了方便初学者学习 ML,该课程构建的内容可以离线使用,并且可以在 Visual Studio Code 中使用. ipynb notebooks 来完成练习。

此外,课程充满了很多艺术,配图新颖:

参考链接:
https://techcommunity.microsoft.com/t5/azure-developer-community-blog/machine-learning-for-beginners-curriculum/ba-p/2502024
理论机器学习课程微软
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

时间序列预测技术

时间序列预测法其实是一种回归预测方法,属于定量预测,其基本原理是;一方面承认事物发展的延续性,运用过去时间序列的数据进行统计分析,推测出事物的发展趋势;另一方面充分考虑到偶然因素影响而产生的随机性,为了消除随机波动的影响,利用历史数据进行统计分析,并对数据进行适当处理,进行趋势预测。

聚类技术

将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

推荐文章
暂无评论
暂无评论~