Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

AI生成中国山水画!普林斯顿姑娘本科毕业作品,线条笔触骗过半数人类观察者

用GAN创作似乎已经不是新鲜事了。

2019,英伟达在GTC大会上推出了一个人工智能图像生成器“GauGAN”。用户只需要简单的勾画几条线条轮廓,便会自动生成美丽的风景图片。

这款AI使用的技术是生成对抗网络(GAN),也是一种深度学习模型,现在被广泛用于图像生成

包括去年MIT和IBM沃森联合实验室联合发布的AI Portraits Ars,用户可以在线将自己的照片转变为中世纪的优化风格,这个在线工具一度火爆到网站宕机。

你可能会说,“这不就是风格迁移么?

不,团队人员专门强调,这不是风格迁移,这是AI自己创作的,从线条到色调,都和人类画师一样,照着真人的样子自行创作。

但是正如东西方巨大的文化沟壑一样,在艺术和技术结合的领域,AI似乎也更偏向西方,我们看到不少AI生成写实主义、后现代,甚至是抽象主义的作品,但是却很少能看到AI在传统东方艺术上的表现。

终于,一位普林斯顿大学的本科学生Alice Xue将目光投向了中国山水画

在她的毕业论文中,她开发了一款名为SAPGAN(Sketch-And-Paint GAN)的AI模型,该模型可以生成传统的中国山水画,为此她也获得了普林斯顿2020优秀毕业论文奖。

论文链接:

https://arxiv.org/pdf/2011.05552.pdf

论文提到,在一项242人的图灵视觉测试研究表明,SAPGAN创作出的画作被误认为人类艺术品的频率高达55%,显著高于基线GAN模型创作的画作。

和人类一样,先画草图后着色

传统中国山水画在绘制过程中,一般有勾、皴、点、染等步骤,顾名思义,就是先勾画出大致轮廓,再进行渲染。

AIice提出的端到端生成中国山水画无条件输入模型遵循的也是这个步骤。为了实现这一过程,AIice构建了两个模型:

  • Stage I: SketchGAN
  • Stage II: PaintGAN

SketchGAN从样本图像中采集高分辨率的边缘图,而PaintGAN是根据SketchGAN进行“翻译”创作,从而生成一幅完整的山水画。
中国人反而更容易误判

实验的结果也很惊人。

在最后进行测评时,242名参与者中,模型生成的画有一半以上(55%)被误认为是人类作品。
视觉图灵测试的分数分布,要求参与者判断艺术品是由人类还是计算机制作的(平均值= 70.5%)

在“审美愉悦”、“艺术构图”、“清晰”和“创造力”方面,SAPGAN模型在所有艺术类别中的评分始终高于基线。SAPGAN与人类绘画最大的区别是“清晰”。

让人匪夷所思的是,中国人可能更容易被SAPGAN欺骗。作为母语为汉语的人,多少是见过几幅山水画的,但是在判别一幅山水画是否为SAPGAN所作时,中国人可能更容易被欺骗。

作者比较了母语为汉语和英语的参与者的结果,看看文化接触是否能让中国参与者正确判断这些画。然而,说汉语的参与者平均得分为49.2%,明显低于说英语的考生的73.5%。

也就是说,说中文的人70%的时候还会把SAPGAN的画误认为是人,而整体水平是55%。显然,不管对中国文化的熟悉程度如何,参与者都很难区分绘画的来源。

自己收集两千多张山水画数据,GitHub上公开

文章提出的模型是在一个新的中国传统山水画数据集上训练的,这一数据集不是来自百度或者谷歌,而是由作者本人收集。

AIice表示,目前的山水画数据集存在不唯一性和图像质量和数量不足的问题,为了促进这一领域的发展,Alice本人建立了2192幅高质量中国传统山水画组成的新数据集,这些山水画来自普林斯顿艺术博物馆藏品。

目前,这些有价值的绘画在很大程度上还没有被生成创作研究触及,作者也在GitHub上发布了这一数据集供公众使用。

Alice在接受学校采访时说,普林斯顿大学美术馆有一个令人惊异的开放式数字收藏中国画,这对我的数据集很有价值,但不幸的是,大多数研究人员没有充分利用它。
数据集链接
https://github.com/Alice x 2020/Chinese-landscape painting-Dataset

写论文之前从没上过机器学习课,准备去Facebook工作

看到这里,你可能觉得Alice是一位“资深程序员”了。但是她表示,“我写这篇论文的时候从来没有上过机器学习课程,所以我经常被这样一个问题弄得不知所措: 像我这样的新手能为已经存在的创新研究做些什么。但是我发现总是有一个有趣的角度来处理一个问题,因为一个人的兴趣和技能是他们独一无二的。”

在谈到对其他的学生建议时,Alice说,将数字化人文融入你的工作中是自然而然的事。找到你感兴趣的东西——无论是19世纪的文学作品还是爵士乐——总有一种方法可以从中收集数据,用来分析或制作与之相关的技术工具。

谈到自己未来的规划,Alice表示自己准备去Facebook工作,成为一名软件工程师。
大数据文摘
大数据文摘

秉承“普及数据思维,传播数据文化,助⼒产业发展”的企业⽂化,我们专注于数据领域的资讯、案例、技术,形成了“媒体+教育+⼈才服务”的良性⽣态,致⼒于打造精准数据科学社区。

产业GAN图像生成普林斯顿大学
4
相关数据
IBM机构

是美国一家跨国科技公司及咨询公司,总部位于纽约州阿蒙克市。IBM主要客户是政府和企业。IBM生产并销售计算机硬件及软件,并且为系统架构和网络托管提供咨询服务。截止2013年,IBM已在全球拥有12个研究实验室和大量的软件开发基地。IBM虽然是一家商业公司,但在材料、化学、物理等科学领域却也有很高的成就,利用这些学术研究为基础,发明很多产品。比较有名的IBM发明的产品包括硬盘、自动柜员机、通用产品代码、SQL、关系数据库管理系统、DRAM及沃森。

https://www.ibm.com/us-en/
相关技术
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

图像生成技术

图像生成(合成)是从现有数据集生成新图像的任务。

图灵测试技术

图灵测试(英语:Turing test,又译图灵试验)是图灵于1950年提出的一个关于判断机器是否能够思考的著名试验,测试某机器是否能表现出与人等价或无法区分的智能。测试的谈话仅限于使用唯一的文本管道,例如计算机键盘和屏幕,这样的结果是不依赖于计算机把单词转换为音频的能力。

生成对抗网络技术

生成对抗网络是一种无监督学习方法,是一种通过用对抗网络来训练生成模型的架构。它由两个网络组成:用来拟合数据分布的生成网络G,和用来判断输入是否“真实”的判别网络D。在训练过程中,生成网络-G通过接受一个随机的噪声来尽量模仿训练集中的真实图片去“欺骗”D,而D则尽可能的分辨真实数据和生成网络的输出,从而形成两个网络的博弈过程。理想的情况下,博弈的结果会得到一个可以“以假乱真”的生成模型。

百度智能云机构

百度是全球最大的中文搜索引擎,是一家互联网综合信息服务公司,更是全球领先的人工智能平台型公司。2000年1月1日创立于中关村,公司创始人李彦宏拥有“超链分析”技术专利,也使中国成为美国、俄罗斯、和韩国之外,全球仅有的4个拥有搜索引擎核心技术的国家之一。

http://www.baidu.com
推荐文章
暂无评论
暂无评论~