近日,知乎上有个小热的问题:
在这个问题下,已经有众多大佬对如何阅读论文进行献言献策。
确实,今年 NeurIPS 2020 有接近两千篇论文被接收,这是一个什么概念?
据说,AI 圈子的一位大神——旷视科技张祥雨博士,3 年看完了 1800 篇论文。
这已经是相当恐怖的速度了,按照这个速度,对大神而言,读完 NeurIPS 2020 的论文尚且需要花费三年的时间,这让别人该何去何从?
关于如何读论文,AI 科技评论之前也有一篇“吴恩达教你读论文:持续而缓慢的学习,才是正道”的文章 ,大家可以再次阅读学习。
按照吴恩达的观点,读论文不能贪快,要高质量、持续地阅读学习才是正道。
今日,AI 科技评论以 NeurIPS 2020 接近两千篇的论文为例,给大家提供两个论文阅读的便利。
1、阅读大牛的论文:
见“ NeurIPS 2020 论文接收大排行!谷歌 169 篇第一、斯坦福第二、清华国内第一”一文。
在这篇文章中,AI 科技评论列举了 AI 学术大牛如深度学习三巨头、周志华、李飞飞等人的论文,大牛的团队出品的论文,质量平均而言肯定有很大保证的。
2、按主题分门别类的阅读:
这是显而易见的选择,也是大家正在做的事情,AI 科技评论今天这篇文章正是把 NeurIPS 2020 的论文做了一个简单分类统计供大家参考阅读。
说明:
1、统计主题根据日常经常接触到的i进行,不保证全面。
2、统计会有交叉和重复:如论文《Semi-Supervised Neural Architecture Search》会被半监督学习和 NAS 统计两次。
3、统计基于“人工”(的)智能,若有疏漏和错误请怪在 AI 身上。
4、本文统计后续补充会持续更新在 AI 科技评论知乎专栏上,欢迎大家关注。
前奏
1、论文题目最短的论文:
《Choice Bandits》
2、合作人数最多(31人)的论文:谷歌大脑+OpenAI 29人+约翰霍普斯金天团
《Language Models are Few-Shot Learners 》
3、模仿 Attenton is all you need?
4、五篇和新冠肺炎有关的论文:
《何时以及如何解除风险?基于区域高斯过程的全球 COVID-19(新冠肺炎)情景分析与政策评估》
《新冠肺炎在德国传播的原因分析》
《CogMol:新冠肺炎靶向性和选择性药物设计》
《非药物干预对新冠肺炎传播有效性估计的鲁棒性研究》
《新冠肺炎预测的可解释序列学习》
另附:COVID-19 Open Data:新冠疫情开放时序数据集 https://github.com/GoogleCloudPlatform/covid-19-open-data
5、五篇 Rethinking 的文章:
《重新思考标签对改善类不平衡学习的价值》
《重新思考预训练和自训练》
这篇由谷歌大脑出品的论文 6 月 11 日就挂在 arXiv 上面了,
论文链接:https://arxiv.org/pdf/2006.06882
《重新思考图神经网络的池化层》
《重新思考通用特征转换中可学习树 Filter》
《重新思考分布转移/转换下深度学习的重要性权重 》
6、题目带有 Beyond 的论文:
今年 ACL 2020 最佳论文题目正是带有 Beyond 一词,以下论文中的某一篇说不定会沾沾 ACL 2020 最佳论文的喜气在 NeurIPS 2020 上面获个大奖。(如未获奖,概不负责)
其中第一篇论文以 Beyond accuracy 开头,这和 ACL 2020 最佳论文题目开头一模一样了。
7、题目比较有意思的论文:
《Teaching a GAN What Not to Learn》
Siddarth Asokan (Indian Institute of Science) · Chandra Seelamantula (IISc Bangalore)
《Self-supervised learning through the eyes of a child》
Emin Orhan (New York University) · Vaibhav Gupta (New York University) · Brenden Lake (New York University)
《How hard is to distinguish graphs with graph neural networks?》
Andreas Loukas (EPFL)
《Tree! I am no Tree! I am a low dimensional Hyperbolic Embedding》
Rishi S Sonthalia (University of Michigan) · Anna Gilbert (University of Michigan)
8、Relu:7 篇
2
NLP相关
1、BERT:7 篇
2、Attention:24 篇,这里 Attention 不止有用在 NLP 领域,这里暂且归到NLP 分类下,下同。
1、Auto Learning Attention
Benteng Ma (Northwestern Polytechnical University) · Jing Zhang (The University of Sydney) · Yong Xia (Northwestern Polytechnical University, Research & Development Institute of Northwestern Polytechnical University in Shenzhen) · Dacheng Tao (University of Sydney)
2、Bayesian Attention Modules
Xinjie Fan (UT Austin) · Shujian Zhang (UT Austin) · Bo Chen (Xidian University) · Mingyuan Zhou (University of Texas at Austin)
3、Improving Natural Language Processing Tasks with Human Gaze-Guided Neural Attention
Ekta Sood (University of Stuttgart, Simtech ) · Simon Tannert (Institute for Natural Language Processing, University of Stuttgart) · Philipp Mueller (VIS, University of Stuttgart) · Andreas Bulling (University of Stuttgart)
4、Prophet Attention: Predicting Attention with Future Attention for Improved Image Captioning
Fenglin Liu (Peking University) · Xuancheng Ren (Peking University) · Xian Wu (Tencent Medical AI Lab) · Shen Ge (Tencent Medical AI Lab) · Wei Fan (Tencent) · Yuexian Zou (Peking University) · Xu Sun (Peking University)
5、Kalman Filtering Attention for User Behavior Modeling in CTR Prediction
Hu Liu (JD.com) · Jing LU (Business Growth BU JD.com) · Xiwei Zhao (JD.com) · Sulong Xu (JD.com) · Hao Peng (JD.com) · Yutong Liu (JD.com) · Zehua Zhang (JD.com) · Jian Li (JD.com) · Junsheng Jin (JD.com) · Yongjun Bao (JD.com) · Weipeng Yan (JD.com)
6、RANet: Region Attention Network for Semantic Segmentation
Dingguo Shen (Shenzhen University) · Yuanfeng Ji (City University of Hong Kong) · Ping Li (The Hong Kong Polytechnic University) · Yi Wang (Shenzhen University) · Di Lin (Tianjin University)
7、SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
Fabian Fuchs (University of Oxford) · Daniel Worrall (University of Amsterdam) · Volker Fischer (Robert Bosch GmbH, Bosch Center for Artificial Intelligence) · Max Welling (University of Amsterdam / Qualcomm AI Research)
8、Complementary Attention Self-Distillation for Weakly-Supervised Object Detection
Zeyi Huang (carnegie mellon university) · Yang Zou (Carnegie Mellon University) · B. V. K. Vijaya Kumar (CMU, USA) · Dong Huang (Carnegie Mellon University)
9、Modern Hopfield Networks and Attention for Immune Repertoire Classification
Michael Widrich (LIT AI Lab / University Linz) · Bernhard Schäfl (JKU Linz) · Milena Pavlović (Department of Informatics, University of Oslo) · Hubert Ramsauer (LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria) · Lukas Gruber (Johannes Kepler University) · Markus Holzleitner (LIT AI Lab / University Linz) · Johannes Brandstetter (LIT AI Lab / University Linz) · Geir Kjetil Sandve (Department of Informatics, University of Oslo) · Victor Greiff (Department of Immunology, University of Oslo) · Sepp Hochreiter (LIT AI Lab / University Linz / IARAI) · Günter Klambauer (LIT AI Lab / University Linz)
10、Untangling tradeoffs between recurrence and self-attention in artificial neural networks
Giancarlo Kerg (MILA) · Bhargav Kanuparthi (Montreal Institute for Learning Algorithms) · Anirudh Goyal ALIAS PARTH GOYAL (Université de Montréal) · Kyle Goyette (University of Montreal) · Yoshua Bengio (Mila / U. Montreal) · Guillaume Lajoie (Mila, Université de Montréal)
11、RATT: Recurrent Attention to Transient Tasks for Continual Image Captioning
Riccardo Del Chiaro (University of Florence) · Bartłomiej Twardowski (Computer Vision Center, UAB) · Andrew D Bagdanov (University of Florence) · Joost van de Weijer (Computer Vision Center Barcelona)
12、Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement
Xin Liu (University of Washington ) · Josh Fromm (OctoML) · Shwetak Patel (University of Washington) · Daniel McDuff (Microsoft Research)
13、SAC: Accelerating and Structuring Self-Attention via Sparse Adaptive Connection
Xiaoya Li (Shannon.AI) · Yuxian Meng (Shannon.AI) · Mingxin Zhou (Shannon.AI) · Qinghong Han (Shannon.AI) · Fei Wu (Zhejiang University) · Jiwei Li (Shannon.AI)
14、Fast Transformers with Clustered Attention
Apoorv Vyas (Idiap Research Institute) · Angelos Katharopoulos (Idiap) · François Fleuret (University of Geneva)
15、Sparse and Continuous Attention Mechanisms
André Martins () · Marcos Treviso (Instituto de Telecomunicacoes) · António Farinhas (Instituto Superior Técnico) · Vlad Niculae (Instituto de Telecomunicações) · Mario Figueiredo (University of Lisbon) · Pedro Aguiar (Instituto Superior Técnico)
16、Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks
David Bieber (Google Brain) · Charles Sutton (Google) · Hugo Larochelle (Google Brain) · Daniel Tarlow (Google Brain)
17、Neural encoding with visual attention
Meenakshi Khosla (Cornell University) · Gia Ngo (Cornell University) · Keith Jamison (Cornell University) · Amy Kuceyeski (Cornell University) · Mert Sabuncu (Cornell)
18、Deep Reinforcement Learning with Stacked Hierarchical Attention for Text-based Games
Yunqiu Xu (University of Technology Sydney) · Meng Fang (Tencent) · Ling Chen (" University of Technology, Sydney, Australia") · Yali Du (University College London) · Joey Tianyi Zhou (IHPC, A*STAR) · Chengqi Zhang (University of Technology Sydney)
19、Object-Centric Learning with Slot Attention
Francesco Locatello (ETH Zürich - MPI Tübingen) · Dirk Weissenborn (Google) · Thomas Unterthiner (Google Research, Brain Team) · Aravindh Mahendran (Google) · Georg Heigold (Google) · Jakob Uszkoreit (Google, Inc.) · Alexey Dosovitskiy (Google Research) · Thomas Kipf (Google Research)
20、SMYRF - Efficient attention using asymmetric clustering
Giannis Daras (National Technical University of Athens) · Nikita Kitaev (University of California, Berkeley) · Augustus Odena (Google Brain) · Alexandros Dimakis (University of Texas, Austin)
21、Focus of Attention Improves Information Transfer in Visual Features
Matteo Tiezzi (University of Siena) · Stefano Melacci (University of Siena) · Alessandro Betti (University of Siena) · Marco Maggini (University of Siena) · Marco Gori (University of Siena)
22、AttendLight: Universal Attention-Based Reinforcement Learning Model for Traffic Signal Control
Afshin Oroojlooy (SAS Institute, Inc) · Mohammadreza Nazari (SAS Institute Inc.) · Davood Hajinezhad (SAS Institute Inc.) · Jorge Silva (SAS)
23、Multi-agent Trajectory Prediction with Fuzzy Query Attention
Nitin Kamra (University of Southern California) · Hao Zhu (Peking University) · Dweep Kumarbhai Trivedi (University of Southern California) · Ming Zhang (Peking University) · Yan Liu (University of Southern California)
24、Limits to Depth Efficiencies of Self-Attention
Yoav Levine (HUJI) · Noam Wies (Hebrew University of Jerusalem) · Or Sharir (Hebrew University of Jerusalem) · Hofit Bata (Hebrew University of Jerusalem) · Amnon Shashua (Hebrew University of Jerusalem)
25、Improving Natural Language Processing Tasks with Human Gaze-Guided Neural Attention
Ekta Sood (University of Stuttgart, Simtech ) · Simon Tannert (Institute for Natural Language Processing, University of Stuttgart) · Philipp Mueller (VIS, University of Stuttgart) · Andreas Bulling (University of Stuttgart
3、Transformer:14 篇
1、Fast Transformers with Clustered Attention
Apoorv Vyas (Idiap Research Institute) · Angelos Katharopoulos (Idiap)· François Fleuret (University of Geneva)
2、Deep Transformers with Latent Depth
Xian Li (Facebook) · Asa Cooper Stickland (University of Edinburgh) · Yuqing Tang (Facebook AI) · Xiang Kong (Carnegie Mellon University)
3、CrossTransformers: spatially-aware few-shot transfer
Carl Doersch (DeepMind) · Ankush Gupta (DeepMind) · Andrew Zisserman (DeepMind & University of Oxford)
4、SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
Fabian Fuchs (University of Oxford) · Daniel Worrall (University of Amsterdam) · Volker Fischer (Robert Bosch GmbH, Bosch Center for Artificial Intelligence) · Max Welling (University of Amsterdam / Qualcomm AI Research)
5、Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing
Zihang Dai (Carnegie Mellon University) · Guokun Lai (Carnegie Mellon University) · Yiming Yang (CMU) · Quoc V Le (Google)
6、Adversarial Sparse Transformer for Time Series Forecasting
Sifan Wu (Tsinghua University) · Xi Xiao (Tsinghua University) · Qianggang Ding (Tsinghua University) · Peilin Zhao (Tencent AI Lab) · Ying Wei (Tencent AI Lab) · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
7、Accelerating Training of Transformer-Based Language Models with Progressive Layer Dropping
Minjia Zhang (Microsoft) · Yuxiong He (Microsoft)
8、COOT: Cooperative Hierarchical Transformer for Video-Text Representation Learning
Mohammadreza Zolfaghari (University of Freiburg) · Simon Ging (Uni Freiburg) · Hamed Pirsiavash (University of Maryland, Baltimore County) · Thomas Brox (University of Freiburg)
9、Cascaded Text Generation with Markov Transformers
Yuntian Deng (Harvard University) · Alexander Rush (Cornell University)
10、GROVER: Self-Supervised Message Passing Transformer on Large-scale Molecular Graphs
Yu Rong (Tencent AI Lab) · Yatao Bian (Tencent AI Lab) · Tingyang Xu (Tencent AI Lab) · Weiyang Xie (Tencent AI Lab) · Ying WEI (Tencent AI Lab) · Wenbing Huang (Tsinghua University) · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
11、Learning to Communicate in Multi-Agent Systems via Transformer-Guided Program Synthesis
Jeevana Priya Inala (MIT) · Yichen Yang (MIT) · James Paulos (University of Pennsylvania) · Yewen Pu (MIT) · Osbert Bastani (University of Pennysylvania) · Vijay Kumar (University of Pennsylvania) · Martin Rinard (MIT) · Armando Solar-Lezama (MIT)
12、Measuring Systematic Generalization in Neural Proof Generation with Transformers
Nicolas Gontier (Mila, Polytechnique Montréal) · Koustuv Sinha (McGill University / Mila / FAIR) · Siva Reddy (McGill University) · Chris Pal (Montreal Institute for Learning Algorithms, École Polytechnique, Université de Montréal)
13、O(n) Connections are Expressive Enough: Universal Approximability of Sparse Transformers
Chulhee Yun (MIT) · Yin-Wen Chang (Google Inc.) · Srinadh Bhojanapalli (Google AI) · Ankit Singh Rawat (Google Research) · Sashank Reddi (Google) · Sanjiv Kumar (Google Research)
14、MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers
Wenhui Wang (MSRA) · Furu Wei (Microsoft Research Asia) · Li Dong (Microsoft Research) · Hangbo Bao (Harbin Institute of Technology) · Nan Yang (Microsoft Research Asia) · Ming Zhou (Microsoft Research)
4、预训练:5 篇
1、Pre-training via Paraphrasing
Mike Lewis (Facebook AI Research) · Marjan Ghazvininejad (Facebook AI Research) · Gargi Ghosh (Facebook) · Armen Aghajanyan (Facebook) · Sida Wang (Facebook AI Research) · Luke Zettlemoyer (University of Washington and Allen Institute for Artificial Intelligence)
2、Pre-Training Graph Neural Networks: A Contrastive Learning Framework with Augmentations
Yuning You (Texas A&M University) · Tianlong Chen (Unversity of Texas at Austin) · Yongduo Sui (University of Science and Technology of China) · Ting Chen (Google) · Zhangyang Wang (University of Texas at Austin) · Yang Shen (Texas A&M University)
3、Rethinking Pre-training and Self-training
Barret Zoph (Google Brain) · Golnaz Ghiasi (Google) · Tsung-Yi Lin (Google Brain) · Yin Cui (Google) · Hanxiao Liu (Google Brain) · Ekin Dogus Cubuk (Google Brain) · Quoc V Le (Google)
4、MPNet: Masked and Permuted Pre-training for Language Understanding
Kaitao Song (Nanjing University of Science and technology) · Xu Tan (Microsoft Research) · Tao Qin (Microsoft Research) · Jianfeng Lu (Nanjing University of Science and Technology) · Tie-Yan Liu (Microsoft Research Asia)
5、Adversarial Contrastive Learning: Harvesting More Robustness from Unsupervised Pre-Training
Ziyu Jiang (Texas A&M University) · Tianlong Chen (Unversity of Texas at Austin) · Ting Chen (Google) · Zhangyang Wang (University of Texas at Austin)
1、A Ranking-based, Balanced Loss Function for Both Classification and Localisation in Object Detection
Kemal Oksuz (Middle East Technical University) · Baris Can Cam (Roketsan) · Emre Akbas (Middle East Technical University) · Sinan Kalkan (Middle East Technical University)
2、UWSOD: Toward Fully-Supervised-Level Performance Weakly SupervisedObject Detection
Yunhang Shen (Xiamen University) · Rongrong Ji (Xiamen University, China) · Zhiwei Chen (Xiamen University) · Yongjian Wu (Tencent Technology (Shanghai) Co.,Ltd) · Feiyue Huang (Tencent)
3、Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection
Xiang Li (NJUST) · Wenhai Wang (Nanjing University) · Lijun Wu (Sun Yat-sen University) · Shuo Chen (Nanjing University of Science and Technology) · Xiaolin Hu (Tsinghua University) · Jun Li (Nanjing University of Science and Technology) · Jinhui Tang (Nanjing University of Science and Technology) · Jian Yang (Nanjing University of Science and Technology)
4、Every View Counts: Cross-View Consistency in 3D Object Detection with Hybrid-Cylindrical-Spherical Voxelization
Qi Chen (Johns Hopkins University) · Lin Sun (Samsung, Stanford, HKUST) · Ernest Cheung (Samsung) · Alan Yuille (Johns Hopkins University)
5、Complementary Attention Self-Distillation for Weakly-Supervised Object Detection
Zeyi Huang (carnegie mellon university) · Yang Zou (Carnegie Mellon University) · B. V. K. Vijaya Kumar (CMU, USA) · Dong Huang (Carnegie Mellon University)
6、Few-Cost Salient Object Detection with Adversarial-Paced Learning
Dingwen Zhang (Xidian University) · HaiBin Tian (Xidian University) · Jungong Han (University of Warwick)
7、Bridging Visual Representations for Object Detection
Cheng Chi (University of Chinese Academy of Sciences) · Fangyun Wei (Microsoft Research Asia) · Han Hu (Microsoft Research Asia)
8、Fine-Grained Dynamic Head for Object Detection
Lin Song (Xi'an Jiaotong University) · Yanwei Li (The Chinese University of Hong Kong) · Zhengkai Jiang (Institute of Automation,Chinese Academy of Sciences) · Zeming Li (Megvii(Face++) Inc) · Hongbin Sun (Xi'an Jiaotong University) · Jian Sun (Megvii, Face++) · Nanning Zheng (Xi'an Jiaotong University)
9、Detection as Regression: Certified Object Detection with Median Smoothing
Ping-yeh Chiang (University of Maryland, College Park) · Michael Curry (University of Maryland) · Ahmed Abdelkader (University of Maryland, College Park) · Aounon Kumar (University of Maryland, College Park) · John Dickerson (University of Maryland) · Tom Goldstein (University of Maryland)
10、RepPoints v2: Verification Meets Regression for Object Detection
Yihong Chen (Peking University) · Zheng Zhang (MSRA) · Yue Cao (Microsoft Research) · Liwei Wang (Peking University) · Stephen Lin (Microsoft Research) · Han Hu (Microsoft Research Asia)
11、CoADNet: Collaborative Aggregation-and-Distribution Networks for Co-Salient Object Detection
Qijian Zhang (City University of Hong Kong) · Runmin Cong (Beijing Jiaotong University) · Junhui Hou (City University of Hong Kong, Hong Kong) · Chongyi Li ( Nanyang Technological University) · Yao Zhao (Beijing Jiaotong University)
12、Restoring Negative Information in Few-Shot Object Detection
Yukuan Yang (Tsinghua University) · Fangyun Wei (Microsoft Research Asia) · Miaojing Shi (King's College London) · Guoqi Li (Tsinghua University)
1、Video Object Segmentation with Adaptive Feature Bank and Uncertain-Region Refinement
Yongqing Liang (Louisiana State University) · Xin Li (Louisiana State University) · Navid Jafari (Louisiana State University) · Jim Chen (Northeastern University)
2、Make One-Shot Video Object Segmentation Efficient Again
Tim Meinhardt (TUM) · Laura Leal-Taixé (TUM)
3、Delving into the Cyclic Mechanism in Semi-supervised Video Object Segmentation
Yuxi Li (Shanghai Jiao Tong University) · Jinlong Peng (Tencent Youtu Lab) · Ning Xu (Adobe Research) · John See (Multimedia University) · Weiyao Lin (Shanghai Jiao Tong university)
实例分割:2 篇
1、Deep Variational Instance Segmentation
Jialin Yuan (Oregon State University) · Chao Chen (Stony Brook University) · Fuxin Li (Oregon State University)
2、DFIS: Dynamic and Fast Instance Segmentation
Xinlong Wang (University of Adelaide) · Rufeng Zhang (Tongji University) · Tao Kong (Bytedance) · Lei Li (ByteDance AI Lab) · Chunhua Shen (University of Adelaide)
行人重识别:
4
各种Learning
1、强化学习:94 篇
1、Reinforcement Learning for Control with Multiple Frequencies
Jongmin Lee (KAIST) · ByungJun Lee (KAIST) · Kee-Eung Kim (KAIST)
2、Reinforcement Learning with General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension
Ruosong Wang (Carnegie Mellon University) · Russ Salakhutdinov (Carnegie Mellon University) · Lin Yang (UCLA)
3、Reinforcement Learning in Factored MDPs: Oracle-Efficient Algorithms and Tighter Regret Bounds for the Non-Episodic Setting
Ziping Xu (University of Michigan) · Ambuj Tewari (University of Michigan)
4、Reinforcement Learning with Feedback Graphs
Christoph Dann (Carnegie Mellon University) · Yishay Mansour (Google) · Mehryar Mohri (Courant Inst. of Math. Sciences & Google Research) · Ayush Sekhari (Cornell University) · Karthik Sridharan (Cornell University)
5、Reinforcement Learning with Augmented Data
Misha Laskin (UC Berkeley) · Kimin Lee (UC Berkeley) · Adam Stooke (UC Berkeley) · Lerrel Pinto (New York University) · Pieter Abbeel (UC Berkeley & covariant.ai) · Aravind Srinivas (UC Berkeley)
6、Reinforcement Learning with Combinatorial Actions: An Application to Vehicle Routing
Arthur Delarue (MIT) · Ross Anderson (Google Research) · Christian Tjandraatmadja (Google)
7、Breaking the Sample Size Barrier in Model-Based Reinforcement Learningwith a Generative Model
Gen Li (Tsinghua University) · Yuting Wei (Carnegie Mellon University) · Yuejie Chi (CMU) · Yuantao Gu (Tsinghua University) · Yuxin Chen (Princeton University)
8、Almost Optimal Model-Free Reinforcement Learning via Reference-Advantage Decomposition
Zihan Zhang (Tsinghua University) · Yuan Zhou (UIUC) · Xiangyang Ji (Tsinghua University)
9、Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder (University of Oxford) · Aldo Pacchiano (UC Berkeley) · Krzysztof M Choromanski (Google Brain Robotics) · Stephen J Roberts (University of Oxford)
10、A Boolean Task Algebra for Reinforcement Learning
Geraud Nangue Tasse (University of the Witwatersrand) · Steven James (University of the Witwatersrand) · Benjamin Rosman (University of the Witwatersrand / CSIR)
11、Knowledge Transfer in Multi-Task Deep Reinforcement Learning for Continuous Control
Zhiyuan Xu (Syracuse University) · Kun Wu (Syracuse University) · Zhengping Che (DiDi AI Labs, Didi Chuxing) · Jian Tang (DiDi AI Labs, DiDi Chuxing) · Jieping Ye (Didi Chuxing)
12、Multi-task Batch Reinforcement Learning with Metric Learning
Jiachen Li (University of California, San Diego) · Quan Vuong (University of California San Diego) · Shuang Liu (University of California, San Diego) · Minghua Liu (UCSD) · Kamil Ciosek (Microsoft) · Henrik Christensen (UC San Diego) · Hao Su (UCSD)
13、On the Stability and Convergence of Robust Adversarial Reinforcement Learning: A Case Study on Linear Quadratic Systems
Kaiqing Zhang (University of Illinois at Urbana-Champaign (UIUC)) · Bin Hu (University of Illinois at Urbana-Champaign) · Tamer Basar (University of Illinois at Urbana-Champaign)
14、Towards Playing Full MOBA Games with Deep Reinforcement Learning
Deheng Ye (Tencent) · Guibin Chen (Tencent) · Wen Zhang (Tencent) · chen sheng (qq) · Bo Yuan (Tencent) · Bo Liu (Tencent) · Jia Chen (Tencent) · Hongsheng Yu (Tencent) · Zhao Liu (Tencent) · Fuhao Qiu (Tencent AI Lab) · Liang Wang (Tencent) · Tengfei Shi (Tencent) · Yinyuting Yin (Tencent) · Bei Shi (Tencent AI Lab) · Lanxiao Huang (Tencent) · qiang fu (Tencent AI Lab) · Wei Yang (Tencent AI Lab) · Wei Liu (Tencent AI Lab)
15、Promoting Coordination through Policy Regularization in Multi-AgentDeep Reinforcement Learning
Julien Roy (Mila) · Paul Barde (Quebec AI institute - Ubisoft La Forge) · Félix G Harvey (Polytechnique Montréal) · Derek Nowrouzezahrai (McGill University) · Chris Pal (MILA, Polytechnique Montréal, Element AI)
16、Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement Learning
Nathan Kallus (Cornell University) · Angela Zhou (Cornell University)
17、Learning Retrospective Knowledge with Reverse Reinforcement Learning
Shangtong Zhang (University of Oxford) · Vivek Veeriah (University of Michigan) · Shimon Whiteson (University of Oxford)
18、Combining Deep Reinforcement Learning and Search for Imperfect-Information Games
Noam Brown (Facebook AI Research) · Anton Bakhtin (Facebook AI Research) · Adam Lerer (Facebook AI Research) · Qucheng Gong (Facebook AI Research)
19、POMO: Policy Optimization with Multiple Optima for Reinforcement Learning
Yeong-Dae Kwon (Samsung SDS) · Jinho Choo (Samsung SDS) · Byoungjip Kim (Samsung SDS) · Iljoo Yoon (Samsung SDS) · Youngjune Gwon (Samsung SDS) · Seungjai Min (Samsung SDS)
20、Self-Paced Deep Reinforcement Learning
Pascal Klink (TU Darmstadt) · Carlo D'Eramo (TU Darmstadt) · Jan Peters (TU Darmstadt & MPI Intelligent Systems) · Joni Pajarinen (TU Darmstadt)
21、Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi (ETHz) · Felix Berkenkamp (Bosch Center for Artificial Intelligence) · Andreas Krause (ETH Zurich)
22、Weakly-Supervised Reinforcement Learning for Controllable Behavior
Lisa Lee (CMU / Google Brain / Stanford) · Ben Eysenbach (Carnegie Mellon University) · Russ Salakhutdinov (Carnegie Mellon University) · Shixiang (Shane) Gu (Google Brain) · Chelsea Finn (Stanford)
23、MOReL: Model-Based Offline Reinforcement Learning
Rahul Kidambi (Cornell University) · Aravind Rajeswaran (University of Washington) · Praneeth Netrapalli (Microsoft Research) · Thorsten Joachims (Cornell)
24、Security Analysis of Safe and Seldonian Reinforcement Learning Algorithms
Pinar Ozisik (UMass Amherst) · Philip Thomas (University of Massachusetts Amherst)
25、Model-based Adversarial Meta-Reinforcement Learning
Zichuan Lin (Tsinghua University) · Garrett W. Thomas (Stanford University) · Guangwen Yang (Tsinghua University) · Tengyu Ma (Stanford University)
26、Safe Reinforcement Learning via Curriculum Induction
Matteo Turchetta (ETH Zurich) · Andrey Kolobov (Microsoft Research) · Shital Shah (Microsoft) · Andreas Krause (ETH Zurich) · Alekh Agarwal (Microsoft Research)
27、Conservative Q-Learning for Offline Reinforcement Learning
Aviral Kumar (UC Berkeley) · Aurick Zhou (University of California, Berkeley) · George Tucker (Google Brain) · Sergey Levine (UC Berkeley)
28、Munchausen Reinforcement Learning
Nino Vieillard (Google Brain) · Olivier Pietquin (Google Research Brain Team) · Matthieu Geist (Google Brain)
29、Non-Crossing Quantile Regression for Distributional Reinforcement Learning
Fan Zhou (Shanghai University of Finance and Economics) · Jianing Wang (Shanghai University of Finance and Economics) · Xingdong Feng (Shanghai University of Finance and Economics)
30、Online Decision Based Visual Tracking via Reinforcement Learning
ke Song (Shandong university) · Wei Zhang (Shandong University) · Ran Song (School of Control Science and Engineering, Shandong University) · Yibin Li (Shandong University)
31、Discovering Reinforcement Learning Algorithms
Junhyuk Oh (DeepMind) · Matteo Hessel (Google DeepMind) · Wojciech Czarnecki (DeepMind) · Zhongwen Xu (DeepMind) · Hado van Hasselt (DeepMind) · Satinder Singh (DeepMind) · David Silver (DeepMind)
32、Shared Experience Actor-Critic for Multi-Agent Reinforcement Learning
Filippos Christianos (University of Edinburgh) · Lukas Schäfer (University of Edinburgh) · Stefano Albrecht (University of Edinburgh)
33、The LoCA Regret: A Consistent Metric to Evaluate Model-Based Behavior inReinforcement Learning
Harm Van Seijen (Microsoft Research) · Hadi Nekoei (MILA) · Evan Racah (Mila, Université de Montréal) · Sarath Chandar (Mila / École Polytechnique de Montréal)
34、Leverage the Average: an Analysis of KL Regularization in Reinforcement Learning
Nino Vieillard (Google Brain) · Tadashi Kozuno (Okinawa Institute of Science and Technology) · Bruno Scherrer (INRIA) · Olivier Pietquin (Google Research Brain Team) · Remi Munos (DeepMind) · Matthieu Geist (Google Brain)
35、Task-agnostic Exploration in Reinforcement Learning
Xuezhou Zhang (UW-Madison) · Yuzhe Ma (University of Wisconsin-Madison) · Adish Singla (MPI-SWS)
36、Generating Adjacency-Constrained Subgoals in Hierarchical Reinforcement Learning
Tianren Zhang (Tsinghua University) · Shangqi Guo (Tsinghua University) · Tian Tan (Stanford University) · Xiaolin Hu (Tsinghua University) · Feng Chen (Tsinghua University)
37、Storage Efficient and Dynamic Flexible Runtime Channel Pruning via DeepReinforcement Learning
Jianda Chen (Nanyang Technological University) · Shangyu Chen (Nanyang Technological University, Singapore) · Sinno Jialin Pan (Nanyang Technological University, Singapore)
38、Multi-Task Reinforcement Learning with Soft Modularization
Ruihan Yang (UC San Diego) · Huazhe Xu (UC Berkeley) · YI WU (UC Berkeley) · Xiaolong Wang (UCSD/UC Berkeley)
39、Weighted QMIX: Improving Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Tabish Rashid (University of Oxford) · Gregory Farquhar (University of Oxford) · Bei Peng (University of Oxford) · Shimon Whiteson (University of Oxford)
40、MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
Elise van der Pol (University of Amsterdam) · Daniel Worrall (University of Amsterdam) · Herke van Hoof (University of Amsterdam) · Frans Oliehoek (TU Delft) · Max Welling (University of Amsterdam / Qualcomm AI Research)
41、On Efficiency in Hierarchical Reinforcement Learning
Zheng Wen (DeepMind) · Doina Precup (DeepMind) · Morteza Ibrahimi (DeepMind) · Andre Barreto (DeepMind) · Benjamin Van Roy (Stanford University) · Satinder Singh (DeepMind)
42、Variational Policy Gradient Method for Reinforcement Learning with General Utilities
Junyu Zhang (Princeton University) · Alec Koppel (U.S. Army Research Laboratory) · Amrit Singh Bedi (US Army Research Laboratory) · Csaba Szepesvari (DeepMind / University of Alberta) · Mengdi Wang (Princeton University)
43、Model-based Reinforcement Learning for Semi-Markov Decision Processes with Neural ODEs
Jianzhun Du (Harvard University) · Joseph Futoma (Harvard University) · Finale Doshi-Velez (Harvard)
44、DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction
Aviral Kumar (UC Berkeley) · Abhishek Gupta (University of California, Berkeley) · Sergey Levine (UC Berkeley)
45、Neurosymbolic Reinforcement Learning with Formally Verified Exploration
Greg Anderson (University of Texas at Austin) · Abhinav Verma (Rice University) · Isil Dillig (UT Austin) · Swarat Chaudhuri (The University of Texas at Austin)
46、Generalized Hindsight for Reinforcement Learning
Alexander Li (UC Berkeley) · Lerrel Pinto (New York University) · Pieter Abbeel (UC Berkeley & covariant.ai)
47、Meta-Gradient Reinforcement Learning with an Objective Discovered Online
Zhongwen Xu (DeepMind) · Hado van Hasselt (DeepMind) · Matteo Hessel (Google DeepMind) · Junhyuk Oh (DeepMind) · Satinder Singh (DeepMind) · David Silver (DeepMind)
48、TorsionNet: A Reinforcement Learning Approach to Sequential Conformer Search
Tarun Gogineni (University of Michigan) · Ziping Xu (University of Michigan) · Exequiel Punzalan (University of Michigan) · Runxuan Jiang (University of Michigan) · Joshua Kammeraad (University of Michigan) · Ambuj Tewari (University of Michigan) · Paul Zimmerman (University of Michigan)
49、Learning to Dispatch for Job Shop Scheduling via Deep Reinforcement Learning
Cong Zhang (Nanyang Technological University) · Wen Song (Institute of Marine Scinece and Technology, Shandong University) · Zhiguang Cao (National University of Singapore) · Jie Zhang (Nanyang Technological University) · Puay Siew Tan (SIMTECH) · Xu Chi (Singapore Institute of Manufacturing Technology, A-Star)
50、Is Plug-in Solver Sample-Efficient for Feature-based Reinforcement Learning?
Qiwen Cui (Peking University) · Lin Yang (UCLA)
51、Instance-based Generalization in Reinforcement Learning
Martin Bertran (Duke University) · Natalia L Martinez (Duke University) · Mariano Phielipp (Intel AI Labs) · Guillermo Sapiro (Duke University)
52、Preference-based Reinforcement Learning with Finite-Time Guarantees
Yichong Xu (Carnegie Mellon University) · Ruosong Wang (Carnegie Mellon University) · Lin Yang (UCLA) · Aarti Singh (CMU) · Artur Dubrawski (Carnegie Mellon University)
53、Learning to Decode: Reinforcement Learning for Decoding of Sparse Graph-Based Channel Codes
Salman Habib (New Jersey Institute of Tech) · Allison Beemer (New Jersey Institute of Technology) · Joerg Kliewer (New Jersey Institute of Technology)
54、BAIL: Best-Action Imitation Learning for Batch Deep Reinforcement Learning
Xinyue Chen (NYU Shanghai) · Zijian Zhou (NYU Shanghai) · Zheng Wang (NYU Shanghai) · Che Wang (New York University) · Yanqiu Wu (New York University) · Keith Ross (NYU Shanghai)
55、Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian Processes
Mengdi Xu (Carnegie Mellon University) · Wenhao Ding (Carnegie Mellon University) · Jiacheng Zhu (Carnegie Mellon University) · ZUXIN LIU (Carnegie Mellon University) · Baiming Chen (Tsinghua University) · Ding Zhao (Carnegie Mellon University)
56、On Reward-Free Reinforcement Learning with Linear Function Approximation
Ruosong Wang (Carnegie Mellon University) · Simon Du (Institute for Advanced Study) · Lin Yang (UCLA) · Russ Salakhutdinov (Carnegie Mellon University)
57、Near-Optimal Reinforcement Learning with Self-Play
Yu Bai (Salesforce Research) · Chi Jin (Princeton University) · Tiancheng Yu (MIT )
58、Robust Multi-Agent Reinforcement Learning with Model Uncertainty
Kaiqing Zhang (University of Illinois at Urbana-Champaign (UIUC)) · TAO SUN (Amazon.com) · Yunzhe Tao (Amazon Artificial Intelligence) · Sahika Genc (Amazon Artificial Intelligence) · Sunil Mallya (Amazon AWS) · Tamer Basar (University of Illinois at Urbana-Champaign)
59、Towards Minimax Optimal Reinforcement Learning in Factored Markov Decision Processes
Yi Tian (MIT) · Jian Qian (MIT) · Suvrit Sra (MIT)
60、Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward
Guannan Qu (California Institute of Technology) · Yiheng Lin (California Institute of Technology) · Adam Wierman (California Institute of Technology) · Na Li (Harvard University)
61、Constrained episodic reinforcement learning in concave-convex and knapsack settings
Kianté Brantley (The University of Maryland College Park) · Miro Dudik (Microsoft Research) · Thodoris Lykouris (Microsoft Research NYC) · Sobhan Miryoosefi (Princeton University) · Max Simchowitz (Berkeley) · Aleksandrs Slivkins (Microsoft Research) · Wen Sun (Microsoft Research NYC)
62、Sample Efficient Reinforcement Learning via Low-Rank Matrix Estimation
Devavrat Shah (Massachusetts Institute of Technology) · Dogyoon Song (Massachusetts Institute of Technology) · Zhi Xu (MIT) · Yuzhe Yang (MIT)
63、Trajectory-wise Multiple Choice Learning for Dynamics Generalization inReinforcement Learning
Younggyo Seo (KAIST) · Kimin Lee (UC Berkeley) · Ignasi Clavera Gilaberte (UC Berkeley) · Thanard Kurutach (University of California Berkeley) · Jinwoo Shin (KAIST) · Pieter Abbeel (UC Berkeley & covariant.ai)
64、Cooperative Heterogeneous Deep Reinforcement Learning
Han Zheng (UTS) · Pengfei Wei (National University of Singapore) · Jing Jiang (University of Technology Sydney) · Guodong Long (University of Technology Sydney (UTS)) · Qinghua Lu (Data61, CSIRO) · Chengqi Zhang (University of Technology Sydney)
65、Implicit Distributional Reinforcement Learning
Yuguang Yue (University of Texas at Austin) · Zhendong Wang (University of Texas, Austin) · Mingyuan Zhou (University of Texas at Austin)
66、Efficient Exploration of Reward Functions in Inverse Reinforcement Learning via Bayesian Optimization
Sreejith Balakrishnan (National University of Singapore) · Quoc Phong Nguyen (National University of Singapore) · Bryan Kian Hsiang Low (National University of Singapore) · Harold Soh (National University Singapore)
67、EPOC: A Provably Correct Policy Gradient Approach to Reinforcement Learning
Alekh Agarwal (Microsoft Research) · Mikael Henaff (Microsoft) · Sham Kakade (University of Washington) · Wen Sun (Microsoft Research NYC)
68、Provably Efficient Reinforcement Learning with Kernel and Neural Function Approximations
Zhuoran Yang (Princeton) · Chi Jin (Princeton University) · Zhaoran Wang (Northwestern University) · Mengdi Wang (Princeton University) · Michael Jordan (UC Berkeley)
69、Decoupled Policy Gradient Methods for Competitive Reinforcement Learning
Constantinos Daskalakis (MIT) · Dylan Foster (MIT) · Noah Golowich (Massachusetts Institute of Technology)
70、Upper Confidence Primal-Dual Reinforcement Learning for CMDP with Adversarial Loss
Shuang Qiu (University of Michigan) · Xiaohan Wei (University of Southern California) · Zhuoran Yang (Princeton) · Jieping Ye (University of Michigan) · Zhaoran Wang (Northwestern University)
71、Improving Generalization in Reinforcement Learning with Mixture Regularization
KAIXIN WANG (National University of Singapore) · Bingyi Kang (National University of Singapore) · Jie Shao (Fudan University) · Jiashi Feng (National University of Singapore)
72、A game-theoretic analysis of networked system control for common-pool resource management using multi-agent reinforcement learning
Arnu Pretorius (InstaDeep) · Scott Cameron (Instadeep) · Elan van Biljon (Stellenbosch University) · Thomas Makkink (InstaDeep) · Shahil Mawjee (InstaDeep) · Jeremy du Plessis (University of Cape Town) · Jonathan Shock (University of Cape Town) · Alexandre Laterre (InstaDeep) · Karim Beguir (InstaDeep)
73、Deep Reinforcement Learning with Stacked Hierarchical Attention for Text-based Games
Yunqiu Xu (University of Technology Sydney) · Meng Fang (Tencent) · Ling Chen (" University of Technology, Sydney, Australia") · Yali Du (University College London) · Joey Tianyi Zhou (IHPC, A*STAR) · Chengqi Zhang (University of Technology Sydney)
74、Robust Reinforcement Learning via Adversarial training with Langevin Dynamics
Parameswaran Kamalaruban (EPFL) · Yu-Ting Huang (EPFL) · Ya-Ping Hsieh (EPFL) · Paul Rolland (EPFL) · Cheng Shi (Unversity of Basel) · Volkan Cevher (EPFL)
75、Interferobot: aligning an optical interferometer by a reinforcement learning agent
Dmitry Sorokin (Russian Quantum Center) · Alexander Ulanov (Russian Quantum Center) · Ekaterina Sazhina (Russian Quantum Center) · Alexander Lvovsky (Oxford University)
76、Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret
Yingjie Fei (Cornell University) · Zhuoran Yang (Princeton) · Yudong Chen (Cornell University) · Zhaoran Wang (Northwestern University) · Qiaomin Xie (Cornell University)
77、Expert-Supervised Reinforcement Learning for Offline Policy Learning and Evaluation
Aaron Sonabend (Harvard University) · Junwei Lu () · Leo Anthony Celi (Massachusetts Institute of Technology) · Tianxi Cai (Harvard School of Public Health) · Peter Szolovits (MIT)
78、Dynamic allocation of limited memory resources in reinforcement learning
Nisheet Patel (University of Geneva) · Luigi Acerbi (University of Helsinki) · Alexandre Pouget (University of Geneva)
79、AttendLight: Universal Attention-Based Reinforcement Learning Model for Traffic Signal Control
Afshin Oroojlooy (SAS Institute, Inc) · Mohammadreza Nazari (SAS Institute Inc.) · Davood Hajinezhad (SAS Institute Inc.) · Jorge Silva (SAS)
80、Sample-Efficient Reinforcement Learning of Undercomplete POMDPs
Chi Jin (Princeton University) · Sham Kakade (University of Washington) · Akshay Krishnamurthy (Microsoft) · Qinghua Liu (Princeton University)
81、RL Unplugged: A Collection of Benchmarks for Offline Reinforcement Learning
Ziyu Wang (Deepmind) · Caglar Gulcehre (Deepmind) · Alexander Novikov (DeepMind) · Thomas Paine (DeepMind) · Sergio Gómez (DeepMind) · Konrad Zolna (DeepMind) · Rishabh Agarwal (Google Research, Brain Team) · Josh Merel (DeepMind) · Daniel Mankowitz (DeepMind) · Cosmin Paduraru (DeepMind) · Gabriel Dulac-Arnold (Google Research) · Jerry Li (Google) · Mohammad Norouzi (Google Brain) · Matthew Hoffman (DeepMind) · Nicolas Heess (Google DeepMind) · Nando de Freitas (DeepMind)
82、A local temporal difference code for distributional reinforcement learning
Pablo Tano (University of Geneva) · Peter Dayan (Max Planck Institute for Biological Cybernetics) · Alexandre Pouget (University of Geneva)
83、The Value Equivalence Principle for Model-Based Reinforcement Learning
Christopher Grimm (University of Michigan) · Andre Barreto (DeepMind) · Satinder Singh (DeepMind) · David Silver (DeepMind)
84、Steady State Analysis of Episodic Reinforcement Learning
Huang Bojun (Rakuten Institute of Technology)
85、Information-theoretic Task Selection for Meta-Reinforcement Learning
Ricardo Luna Gutierrez (University of Leeds) · Matteo Leonetti (University of Leeds)
86、A Unifying View of Optimism in Episodic Reinforcement Learning
Gergely Neu (Universitat Pompeu Fabra) · Ciara Pike-Burke (Imperial College London)
87、Accelerating Reinforcement Learning through GPU Atari Emulation
Steven Dalton (Nvidia) · iuri frosio (nvidia)
88、Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations
Huan Zhang (UCLA) · Hongge Chen (MIT) · Chaowei Xiao (University of Michigan, Ann Arbor) · Bo Li (UIUC) · mingyan liu (university of Michigan, Ann Arbor) · Duane Boning (Massachusetts Institute of Technology) · Cho-Jui Hsieh (UCLA)
89、Bridging Imagination and Reality for Model-Based Deep Reinforcement Learning
Guangxiang Zhu (Tsinghua university) · Minghao Zhang (Tsinghua University) · Honglak Lee (Google / U. Michigan) · Chongjie Zhang (Tsinghua University)
90、Adaptive Discretization for Model-Based Reinforcement Learning
Sean Sinclair (Cornell University) · Tianyu Wang (Duke University) · Gauri Jain (Cornell University) · Siddhartha Banerjee (Cornell University) · Christina Yu (Cornell University)
91、Provably Good Batch Off-Policy Reinforcement Learning Without Great Exploration
Yao Liu (Stanford University) · Adith Swaminathan (Microsoft Research) · Alekh Agarwal (Microsoft Research) · Emma Brunskill (Stanford University)
92、Provably adaptive reinforcement learning in metric spaces
Tongyi Cao (University of Massachusetts Amherst) · Akshay Krishnamurthy (Microsoft)
93、Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex Lee (UC Berkeley) · Anusha Nagabandi (UC Berkeley) · Pieter Abbeel (UC Berkeley & covariant.ai) · Sergey Levine (UC Berkeley)
94、Inverse Reinforcement Learning from a Gradient-based Learner
Giorgia Ramponi (Politecnico di Milano) · Gianluca Drappo (Politecnico di Milano) · Marcello Restelli (Politecnico di Milano)
2、GAN:21 篇
1、BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images
Thu Nguyen-Phuoc (University of Bath) · Christian Richardt (University of Bath) · Long Mai (Adobe Research) · Yongliang Yang (University of Bath) · Niloy Mitra (University College London)
2、TaylorGAN: Neighbor-Augmented Policy Update Towards Sample-Efficient Natural Language Generation
Chun-Hsing Lin (National Taiwan University) · Siang-Ruei Wu (National Taiwan University) · Hung-yi Lee (National Taiwan University) · Yun-Nung Chen (National Taiwan University)
3、CircleGAN: Generative Adversarial Learning across Spherical Circles
Woohyeon Shim (Postech) · Minsu Cho (POSTECH)
4、COT-GAN: Generating Sequential Data via Causal Optimal Transport
Tianlin Xu (London School of Economics and Political Science) · Wenliang Le (Gatsby Unit, UCL) · Michael Munn (Google) · Beatrice Acciaio (London School of Economics)
5、HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
6、GramGAN: Deep 3D Texture Synthesis From 2D Exemplars
Tiziano Portenier (ETH Zurich) · Siavash Arjomand Bigdeli (CSEM) · Orcun Goksel (ETH Zurich)
7、ColdGANs: Taming Language GANs with Cautious Sampling Strategies
Thomas Scialom (reciTAL) · Paul-Alexis Dray (reciTAL) · Sylvain Lamprier (LIP6-UPMC) · Benjamin Piwowarski (LIP6, UPMC / CNRS, Paris, France) · Jacopo Staiano (reciTAL)
8、PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals
Henry Charlesworth (University of Warwick) · Giovanni Montana (University of Warwick)
Jungil Kong (Kakao Enterprise) · Jaehyeon Kim (Kakao Enterprise) · Jaekyoung Bae (Kakao Enterprise)
9、GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators
Dingfan Chen (CISPA - Helmholtz Center for Information Security) · Tribhuvanesh Orekondy (Max Planck Institute for Informatics) · Mario Fritz (CISPA Helmholtz Center i.G.)
10、GANSpace: Discovering Interpretable GAN Controls
Erik Härkönen (Aalto University) · Aaron Hertzmann (Adobe) · Jaakko Lehtinen (Aalto University & NVIDIA) · Sylvain Paris (Adobe)
11、GAN Memory with No Forgetting
Chunyuan Li (Microsoft Research) · Miaoyun Zhao (UNC) · Jianqiao Li (Duke University) · Sijia Wang (Duke University) · Lawrence Carin (Duke University)
12、Improving GAN Training with Probability Ratio Clipping and Sample Reweighting
Yue Wu (Carnegie Mellon University) · Pan Zhou (National University of Singapore) · Andrew Gordon Wilson (New York University) · Eric Xing (Petuum Inc. / Carnegie Mellon University) · Zhiting Hu (Carnegie Mellon University)
13、Instance Selection for GANs
Terrance DeVries (University of Guelph) · Michal Drozdzal (FAIR) · Graham W Taylor (University of Guelph)
14、Distributional Robustness with IPMs and links to Regularization and GANs
Hisham Husain (The Australian National University & Data61)
15、Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample
Shir Gur (Tel Aviv University) · Sagie Benaim (Tel Aviv University) · Lior Wolf (Facebook AI Research)
16、Your GAN is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling
Tong Che (MILA) · Ruixiang ZHANG (Mila/UdeM) · Jascha Sohl-Dickstein (Google Brain) · Hugo Larochelle (Google Brain) · Liam Paull (Université de Montréal) · Yuan Cao (Google Brain) · Yoshua Bengio (Mila / U. Montreal)
17、Teaching a GAN What Not to Learn
Siddarth Asokan (Indian Institute of Science) · Chandra Seelamantula (IISc Bangalore)
18、Top-k Training of GANs: Improving GAN Performance by Throwing Away Bad Samples
Samarth Sinha (University of Toronto, Vector Institute) · Zhengli Zhao (UCI, Google Brain) · Anirudh Goyal ALIAS PARTH GOYAL (Université de Montréal) · Colin A Raffel (Google Brain) · Augustus Odena (Google Brain)
19、Differentiable Augmentation for Data-Efficient GAN Training
Shengyu Zhao (Tsinghua University) · Zhijian Liu (MIT) · Ji Lin (MIT) · Jun-Yan Zhu (MIT) · Song Han (MIT)
20、DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs
yaxing wang (Centre de Visió per Computador (CVC)) · Lu Yu (computer vision center, UAB) · Joost van de Weijer (Computer Vision Center Barcelona)
21、Reconstructing Perceptive Images from Brain Activity by Shape-SemanticGAN
Tao Fang (Zhejiang University) · Yu Qi (Zhejiang University) · Gang Pan (Zhejiang University
3、无监督学习(6 篇):
1、Unsupervised Learning of Dense Visual Representations
Pedro O. Pinheiro (Element AI) · Amjad Almahairi (Element AI) · Ryan Benmalek (Cornell University) · Florian Golemo (MILA / ElementAI) · Aaron Courville (U. Montreal)
2、Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron (INRIA / FAIR) · Ishan Misra (Facebook AI Research ) · Julien Mairal (Inria) · Priya Goyal (Facebook AI Research) · Piotr Bojanowski (Facebook) · Armand Joulin (Facebook AI research)
3、Unsupervised Learning of Object Landmarks via Self-Training Correspondence
Dimitrios Mallis (Computer Vision Laboratory - University of Nottingham) · Enrique Sanchez (Samsung AI Centre) · Matthew Bell (University of Nottingham) · Georgios Tzimiropoulos (Queen Mary University of London)
4、Unsupervised Learning of Lagrangian Dynamics from Images for Prediction and Control
Yaofeng Desmond Zhong (Princeton University) · Naomi Leonard (Princeton University)
5、Erdos Goes Neural: an Unsupervised Learning Framework for Combinatorial Optimization on Graphs
Nikolaos Karalias (EPFL) · Andreas Loukas (EPFL)
6、Provably Efficient Exploration for RL with Unsupervised Learning
Fei Feng (University of California, Los Angeles) · Ruosong Wang (Carnegie Mellon University) · Wotao Yin (Alibaba US, DAMO Academy)· Simon Du (Institute for Advanced Study) · Lin Yang (UCLA
4、自监督学习:8 篇
1、Self-supervised learning through the eyes of a child
Emin Orhan (New York University) · Vaibhav Gupta (New York University) · Brenden Lake (New York University)
2、Self-Supervised Learning by Cross-Modal Audio-Video Clustering
Humam Alwassel (KAUST) · Dhruv Mahajan (Facebook) · Bruno Korbar (Facebook) · Lorenzo Torresani (Facebook AI) · Bernard Ghanem (KAUST) · Du Tran (Facebook AI)
3、Demystifying Contrastive Self-Supervised Learning: Invariances, Augmentations and Dataset Biases
Senthil Purushwalkam Shiva Prakash (Carnegie Mellon University) · Abhinav Gupta (Facebook AI Research/CMU)
4、LoopReg: Self-supervised Learning of Implicit Surface Correspondences, Pose and Shape for 3D Human Mesh Registration
Bharat Bhatnagar (MPI-INF) · Cristian Sminchisescu (Google Research) · Christian Theobalt (MPI Informatik) · Gerard Pons-Moll (MPII, Germany)
5、Patch2Self: Denoising Diffusion MRI with Self-Supervised Learning
Shreyas Fadnavis (Indiana University Bloomington) · Joshua Batson (CZ Biohub) · Eleftherios Garyfallidis (Indiana University)
6、Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning
Jean-Bastien Grill (DeepMind) · Florian Strub (DeepMind) · Florent Altché (DeepMind) · Corentin Tallec (Deepmind) · Pierre Richemond (Imperial College) · Elena Buchatskaya (DeepMind) · Carl Doersch (DeepMind) · Bernardo Avila Pires (DeepMind) · Zhaohan Guo (DeepMind) · Mohammad Gheshlaghi Azar (DeepMind) · Bilal Piot (DeepMind) · koray kavukcuoglu (DeepMind) · Remi Munos (DeepMind) · Michal Valko (DeepMind)
7、CompReSS: Compressing Representations for Self-Supervised Learning
Soroush Abbasi Koohpayegani (University of Maryland Baltimore County) · Ajinkya Tejankar (University of Maryland Baltimore County) · Hamed Pirsiavash (University of Maryland, Baltimore County)
8、wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
Alexei Baevski (Facebook AI Research) · Yuhao Zhou (University of Toronto) · Abdel-rahman Mohamed (Facebook AI Research (FAIR)) · Michael Auli (Facebook AI Research
5、半监督学习:14 篇
1、Semi-Supervised Neural Architecture Search
Renqian Luo (University of Science and Technology of China) · Xu Tan (Microsoft Research) · Rui Wang (Microsoft Research Asia) · Tao Qin (Microsoft Research) · Enhong Chen
2、Semi-Supervised Partial Label Learning via Confidence-Rated Margin Maximization
Wei Wang (Southeast University) · Min-Ling Zhang (Southeast University)
3、Unsupervised Semantic Aggregation and Deformable Template Matching for Semi-Supervised Learning
Qi Wang (Northwestern Polytechnical University) · Tao Han (Northwestern Polytechnical University) · Junyu Gao (Northwestern Polytechnical University, Center for OPTical IMagery Analysis and Learning) · Yuan Yuan (Northwestern Polytechnical University)
4、FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
Kihyuk Sohn (NEC Laboratories America) · David Berthelot (Google Brain) · Nicholas Carlini (Google) · Zizhao Zhang (Google) · Han Zhang (Google) · Colin A Raffel (Google Brain) · Ekin Dogus Cubuk (Google Brain) · Alexey Kurakin (Google Brain) · Chun-Liang Li (Google)
5、Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning
Zhongzheng Ren (UIUC) · Raymond Yeh (University of Illinois at Urbana–Champaign) · Alexander Schwing (University of Illinois at Urbana-Champaign)
6、VIME: Extending the Success of Self- and Semi-supervised Learning to Tabular Domain
Jinsung Yoon (University of California, Los Angeles) · Yao Zhang (University of Cambridge) · James Jordon (University of Oxford) · Mihaela van der Schaar (University of Cambridge)
7、Delving into the Cyclic Mechanism in Semi-supervised Video Object Segmentation
Yuxi Li (Shanghai Jiao Tong University) · Jinlong Peng (Tencent Youtu Lab) · Ning Xu (Adobe Research) · John See (Multimedia University) · Weiyao Lin (Shanghai Jiao Tong university)
(University of Science and Technology of China) · Tie-Yan Liu (Microsoft Research Asia)
8、Graph Stochastic Neural Networks for Semi-supervised Learning
Haibo Wang (Tsinghua University) · Chuan Zhou (Chinese Academy of Sciences) · Xin Chen (Institute for Network Sciences and Cyberspace, Tsinghua University) · Jia Wu (Macquarie University) · Shirui Pan (Monash University) · Jilong Wang (Tsinghua University)
9、Graph Random Neural Networks for Semi-Supervised Learning on Graphs
Wenzheng Feng (Tsinghua University) · Jie Zhang (Webank Co.,Ltd) · Yuxiao Dong (Microsoft) · Yu Han (Tsinghua University) · Huanbo Luan (Tsinghua University) · Qian Xu (WeBank) · Qiang Yang (WeBank and HKUST) · Evgeny Kharlamov (Bosch Center for Artificial Intelligence) · Jie Tang (Tsinghua University)
10、Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering
Meng Liu (Purdue University) · David Gleich (Purdue University)
11、Uncertainty Aware Semi-Supervised Learning on Graph Data
Xujiang Zhao (The University of Texas at Dallas) · Feng Chen (UT Dallas) · Shu Hu (University at Buffalo, State University of New York) · Jin-Hee Cho (Virginia Tech)
12、Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning
Jaehyung Kim (KAIST) · Youngbum Hur (Samsung Advanced Institute of Technology) · Sejun Park (KAIST) · Eunho Yang (Korea Advanced Institute of Science and Technology; AItrics) · Sung Ju Hwang (KAIST, AITRICS) · Jinwoo Shin (KAIST)
13、Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose tracking
Anqi Wu () · E. Kelly Buchanan (Columbia University) · Matthew Whiteway (Columbia University) · Michael Schartner (University of Geneva) · Guido Meijer (Champalimaud Center for the Unknown) · Jean-Paul Noel (New York University) · Erica Rodriguez (Columbia University) · Claire Everett (Columbia University) · Amy Norovich (Columbia University) · Evan Schaffer (Columbia University) · Neeli Mishra (Columbia University) · C. Daniel Salzman (Columbia University) · Dora Angelaki (New York University) · Andrés Bendesky (Columbia University) · The International Brain Laboratory The International Brain Laboratory (The International Brain Laboratory) · John Cunningham (University of Columbia) · Liam Paninski (Columbia University)
14、The Unreasonable Effectiveness of Big Models for Semi-Supervised Learning
Ting Chen (Google) · Simon Kornblith (Google Brain) · Kevin Swersky (Google) · Mohammad Norouzi (Google Brain) · Geoffrey E Hinton (Google & University of Toronto)
6、迁移学习:9 篇
1、Transfer Learning via ℓ1 Regularization
Masaaki Takada (Toshiba Corporation) · Hironori Fujisawa (The Institute of Statistical Mathematics)
2、Tiny Transfer Learning: Towards Memory-Efficient On-Device Learning
Han Cai (Massachusetts Institute of Technology) · Chuang Gan (MIT-IBM Watson AI Lab) · Ligeng Zhu (MIT) · Song Han (MIT)
3、Co-Tuning for Transfer Learning
Kaichao You (Tsinghua University) · Zhi Kou (Tsinghua University) · Mingsheng Long (Tsinghua University) · Jianmin Wang (Tsinghua University)
4、Shared Space Transfer Learning for analyzing multi-site fMRI data
Muhammad Yousefnezhad (University of Alberta) · Alessandro Selvitella (Purdue University Fort Wayne) · Daoqiang Zhang (Nanjing University of Aeronautics and Astronautics) · Andrew Greenshaw (University of Alberta) · Russell Greiner (University of Alberta)
5、On the Theory of Transfer Learning: The Importance of Task Diversity
Nilesh Tripuraneni (UC Berkeley) · Michael Jordan (UC Berkeley) · Chi Jin (Princeton University)
6、Hierarchical Granularity Transfer Learning
Shaobo Min (USTC) · Hongtao Xie (University of Science and Technology of China) · Hantao Yao ( Institute of Automation, Chinese Academy of Sciences) · Xuran Deng (University of Science and Technology of China) · Zheng-Jun Zha (University of Science and Technology of China) · Yongdong Zhang (University of Science and Technology of China)
7、What is being transferred in transfer learning?
Behnam Neyshabur (Google) · Hanie Sedghi (Google Brain) · Chiyuan Zhang (Google Brain)
8、Minimax Lower Bounds for Transfer Learning with Linear and One-hidden Layer Neural Networks
Mir Mohammadreza Mousavi Kalan (University of Southern California) · Zalan Fabian (University of Southern California) · Salman Avestimehr (University of Southern California) · Mahdi Soltanolkotabi (University of Southern california)
9、A Combinatorial Perspective on Transfer Learning
Jianan Wang (DeepMind) · Eren Sezener (DeepMind) · David Budden (DeepMind) · Marcus Hutter (DeepMind) · Joel Veness (Deepmind)
7、主动学习:4 篇
1、Exemplar Guided Active Learning
Jason Hartford (University of British Columbia) · Kevin Leyton-Brown (University of British Columbia) · Hadas Raviv (AI21 Labs) · Dan Padnos (AI21 Labs) · Shahar Lev (AI21 Labs) · Barak Lenz (AI21 Labs)
2、Finding the Homology of Decision Boundaries with Active Learning
Weizhi Li (Arizona State University) · Gautam Dasarathy (Arizona State University) · Karthikeyan Natesan Ramamurthy (IBM Research) · Visar Berisha (Arizona State University)
3、Efficient active learning of sparse halfspaces with arbitrary bounded noise
Chicheng Zhang (University of Arizona) · Jie Shen (Stevens Institute of Technology) · Pranjal Awasthi (Rutgers University/Google)
4、Graph Policy Network for Transferable Active Learning on Graphs
Shengding Hu (Tsinghua University) · Zheng Xiong (Tsinghua University / University of Oxford) · Meng Qu (Mila) · Xingdi Yuan (Microsoft Research) · Marc-Alexandre Côté (Microsoft Research) · Zhiyuan Liu (Tsinghua University) · Jian Tang (Mila)
8、元学习:23 篇
1、Meta-Learning through Hebbian Plasticity in Random Networks
Elias Najarro (IT University of Copenhagen) · Sebastian Risi (IT University of Copenhagen)
2、Meta-learning from Tasks with Heterogeneous Attribute Spaces
Tomoharu Iwata (NTT) · Atsutoshi Kumagai (NTT Software Innovation Center)
3、Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
4、Meta-Learning Requires Meta-Augmentation
Janarthanan Rajendran (University of Michigan) · Alexander Irpan (Google Brain) · Eric Jang (Google Brain)
5、A meta-learning approach to (re)discover plasticity rules that carve a desired function to a neural network
Basile Confavreux (University of Oxford) · Friedemann Zenke (Friedrich Miescher Institute) · Everton Agnes (University of Oxford) · Timothy Lillicrap (DeepMind & UCL) · Tim Vogels (Institute of Science and Technology)
6、Robust Meta-learning for Mixed Linear Regression with Small Batches
Weihao Kong (Stanford University) · Raghav Somani (University of Washington) · Sham Kakade (University of Washington) · Sewoong Oh (University of Washington)
7、Modular Meta-Learning with Shrinkage
Yutian Chen (DeepMind) · Abram Friesen (DeepMind) · Feryal Behbahani (DeepMind) · Arnaud Doucet (Google DeepMind) · David Budden (DeepMind) · Matthew Hoffman (DeepMind) · Nando de Freitas (DeepMind)
8、Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels
Massimiliano Patacchiola (University of Edinburgh) · Jack Turner (University of Edinburgh) · Elliot J. Crowley (University of Edinburgh) · Michael O'Boyle (University of Edinburgh) · Amos Storkey (University of Edinburgh)
9、MetaSDF: Meta-Learning Signed Distance Functions
Vincent Sitzmann (Stanford University) · Eric Chan (Stanford University) · Richard Tucker (Google) · Noah Snavely (Cornell University and Google AI) · Gordon Wetzstein (Stanford University)
10、OOD-MAML: Meta-Learning for Few-Shot Out-of-Distribution Detection and Classification
Taewon Jeong (KAIST) · Heeyoung Kim (KAIST)
11、Submodular Meta-Learning
Arman Adibi (University of Pennsylvania) · Aryan Mokhtari (UT Austin) · Hamed Hassani (UPenn)
12、Continuous Meta-Learning without Tasks
James Harrison (Stanford University) · Apoorva Sharma (Stanford University) · Chelsea Finn (Stanford) · Marco Pavone (Stanford University)
Andrew Foong (University of Cambridge) · Wessel Bruinsma (Invenia Labs and University of Cambridge) · Jonathan Gordon (University of Cambridge) · Yann Dubois (Facebook AI Research) · James Requeima (University of Cambridge / Invenia Labs) · Richard E Turner (University of Cambridge)
13、Online Structured Meta-learning
Huaxiu Yao (Pennsylvania State University) · Yingbo Zhou (Salesforce Research) · Mehrdad Mahdavi (Pennsylvania State University) · Zhenhui (Jessie) Li (Penn State University) · Richard Socher (Salesforce) · Caiming Xiong (Salesforce)
14、Probabilistic Active Meta-Learning
Jean Kaddour (Imperial College London) · Steindor Saemundsson (Imperial College London) · Marc Deisenroth (University College London)
15、Gradient-EM Bayesian Meta-Learning
Yayi Zou (Didi Research America) · Xiaoqi Lu (Columbia University)
16、Task-Robust Model-Agnostic Meta-Learning
Liam Collins (University of Texas at Austin) · Aryan Mokhtari (UT Austin) · Sanjay Shakkottai (University of Texas at Austin)
17、Structured Prediction for Conditional Meta-Learning
Ruohan Wang (Imperial College London) · Yiannis Demiris (Imperial College London) · Carlo Ciliberto (Imperial College London)
18、Modeling and Optimization Trade-off in Meta-learning
Katelyn Gao (Intel Labs) · Ozan Sener (Intel Labs)
19、Adversarially Robust Few-Shot Learning: A Meta-Learning Approach
Micah Goldblum (University of Maryland) · Liam Fowl (University of Maryland) · Tom Goldstein (University of Maryland)
20、A Closer Look at the Training Strategy for Modern Meta-Learning
JIAXIN CHEN (The Hong Kong Polytechnic University) · Xiao-Ming Wu (The Hong Kong Polytechnic University) · Yanke Li (ETH Zurich) · Qimai LI (The Hong Kong PolyU) · Li-Ming Zhan (The Hong Kong Polytechnic University) · Fu-lai Chung (The Hong Kong Polytechnic University)
21、Convergence of Meta-Learning with Task-Specific Adaptation over Partial Parameters
Kaiyi Ji (The Ohio State University) · Jason Lee (Princeton University) · Yingbin Liang (The Ohio State University) · H. Vincent Poor (Princeton University)
22、The Advantage of Conditional Meta-Learning for Biased Regularization and Fine Tuning
Giulia Denevi (IIT & UNIGE) · Massimiliano Pontil (IIT & UCL) · Carlo Ciliberto (Imperial College London)
23、Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach
Alireza Fallah (MIT) · Aryan Mokhtari (UT Austin) · Asuman Ozdaglar (Massachusetts Institute of Technology
9、联邦学习:9 篇
1、Robust Federated Learning: The Case of Affine Distribution Shifts
Amirhossein Reisizadeh (UC Santa Barbara) · Farzan Farnia (Stanford University) · Ramtin Pedarsani (UC Santa Barbara) · Ali Jadbabaie (MIT)
2、Personalized Federated Learning with Moreau Envelopes
Canh T. Dinh (The University of Sydney) · Nguyen H. Tran (The University of Sydney) · Tuan Dung Nguyen (The University of Melbourne)
3、Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach
Alireza Fallah (MIT) · Aryan Mokhtari (UT Austin) · Asuman Ozdaglar (Massachusetts Institute of Technology)
4、An Efficient Framework for Clustered Federated Learning
Avishek Ghosh (University of California, Berkeley) · Jichan Chung (University of California, Berkeley) · Dong Yin (DeepMind) · Kannan Ramchandran (UC Berkeley)
5、Optimal Topology Design for Cross-Silo Federated Learning
Othmane MARFOQ (Inria / Accenture) · CHUAN XU (Inria Sophia Antipolis) ·
Giovanni Neglia (Inria) · Richard Vidal (Accenture)
6、Ensemble Distillation for Robust Model Fusion in Federated Learning
Tao Lin (EPFL) · Lingjing Kong (EPFL) · Sebastian U Stich (EPFL) ·
Martin Jaggi (EPFL)
7、Attack of the Tails: Yes, You Really Can Backdoor Federated Learning
Hongyi Wang (University of Wisconsin-Madison) · Kartik Sreenivasan (University of Wisconsin-Madison) · Shashank Rajput (University of Wisconsin - Madison) · Harit Vishwakarma (University of Wisconsin Madison) · Jy-yong Sohn (KAIST) · Saurabh Agarwal (UW-Madison) · Kangwook Lee (UW Madison) · Dimitris Papailiopoulos (University of Wisconsin-Madison)
8、Inverting Gradients - How easy is it to break privacy in federated learning?
Jonas Geiping (University of Siegen) · Hartmut Bauermeister (University of Siegen) · Hannah Dröge (University of Siegen) · Michael Moeller (University of Siegen)
9、Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely (KAUST) · Slavomír Hanzely (KAUST) · Samuel Horváth (King Abdullah University of Science and Technology) · Peter Richtarik (KAUST)
10、多模态:7 篇
1、Multimodal Graph Networks for Compositional Generalization in Visual Question Answering
Raeid Saqur (Princeton University) · Karthik Narasimhan (Princeton University)
2、Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence
Thomas M Sutter (ETH Zurich) · Imant Daunhawer (ETH Zurich) · Julia Vogt (ETH Zurich)
3、Deep Multimodal Fusion by Channel Exchanging
Yikai Wang (Tsinghua University) · Wenbing Huang (Tsinghua University) · Fuchun Sun (Tsinghua) · Tingyang Xu (Tencent AI Lab) · Yu Rong (Tencent AI Lab) · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
4、Self-Supervised MultiModal Versatile Networks
Jean-Baptiste Alayrac (Deepmind) · Adria Recasens (DeepMind) · Rosalia Schneider (DeepMind) · Relja Arandjelović (DeepMind) · Jason Ramapuram (University of Geneva) · Jeffrey De Fauw (DeepMind) · Lucas Smaira (DeepMind) · Sander Dieleman (DeepMind) · Andrew Zisserman (DeepMind & University of Oxford)
5、CoMIR: Contrastive Multimodal Image Representation for Registration
Nicolas Pielawski (Uppsala University) · Elisabeth Wetzer (Centre for Image Analysis, Department of Information Technology, Uppsala University, Sweden) · Johan Öfverstedt (Department of Information Technology, Uppsala University) · Jiahao Lu (Uppsala University) · Carolina Wählby (Uppsala University) · Joakim Lindblad (Centre for Image Analysis, Department of Information Technology, Uppsala University, Sweden) · Natasa Sladoje (Centre for Image Analysis, Department of Information Technology, Uppsala University, Sweden)
6、Evidential Sparsification of Multimodal Latent Spaces in Conditional Variational Autoencoders
Masha Itkina (Stanford University) · Boris Ivanovic (Stanford University) · Ransalu Senanayake (Stanford University) · Mykel J Kochenderfer (Stanford University) · Marco Pavone (Stanford University)
7、The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes
Douwe Kiela (Facebook AI Research) · Hamed Firooz (Facebook) · Aravind Mohan (Facebook) · Vedanuj Goswami (Facebook) · Amanpreet Singh (Facebook) · Pratik Ringshia (Facebook) · Davide Testuggine (Facebook
5
One/Few/Zero-shot、OOD
One-shot:5 篇
1、Make One-Shot Video Object Segmentation Efficient Again
Tim Meinhardt (TUM) · Laura Leal-Taixé (TUM)
2、Adversarial Style Mining for One-Shot Unsupervised Domain Adaptation
Yawei Luo (Zhejiang University) · Ping Liu (UTS) · Tao Guan (Huazhong University of Science and Technology) · Junqing Yu (Huazhong University of Science & Technology) · Yi Yang (UTS)
3、Bridging the Gap between Sample-based and One-shot Neural Architecture Search with BONAS
Han Shi (Hong Kong University of Science and Technology) · Renjie Pi (Huawei Noah’s Ark Lab) · Hang Xu (Huawei Noah's Ark Lab) · Zhenguo Li (Noah's Ark Lab, Huawei Tech Investment Co Ltd) · James Kwok (Hong Kong University of Science and Technology) · Tong Zhang (Hong Kong University of Science and Technology)
4、Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees
Shali Jiang (Washington University in St. Louis) · Daniel Jiang (Facebook) · Maximilian Balandat (Facebook) · Brian Karrer (Facebook) · Jacob Gardner (University of Pennsylvania) · Roman Garnett (Washington University in St. Louis)
5、Cream of the Crop: Distilling Prioritized Paths For One-Shot Neural Architecture Search
Houwen Peng (Microsoft Research) · Hao Du (Microsoft Research) · Hongyuan Yu (MSRA) · QI LI (Tsinghua Univeristy) · Jing Liao (City University of Hong Kong) · Jianlong Fu (Microsoft Research
Few-shot:14 篇
1、Few-shot Image Generation via Self-Adaptation
Yijun Li (Adobe Research) · Richard Zhang (Adobe) · Jingwan (Cynthia) Lu (Adobe Research) · Eli Shechtman (Adobe Research, US)
2、Few-shot Visual Reasoning with Meta-Analogical Contrastive Learning
Youngsung Kim (Samsung Advanced Institute of Technology) · Jinwoo Shin (KAIST) · Eunho Yang (Korea Advanced Institute of Science and Technology; AItrics) · Sung Ju Hwang (KAIST, AITRICS)
3、Interventional Few-Shot Learning
Zhongqi Yue (Nanyang Technological University) · Hanwang Zhang (NTU) · Qianru Sun (Singapore Management University) · Xian-Sheng Hua (Damo Academy, Alibaba Group)
4、Self-Supervised Few-Shot Learning on Point Clouds
Charu Sharma (Indian Institute of Technology Hyderabad) · Manohar Kaul (IITH)
5、Adversarially Robust Few-Shot Learning: A Meta-Learning Approach
Micah Goldblum (University of Maryland) · Liam Fowl (University of Maryland) · Tom Goldstein (University of Maryland)
6、Information Maximization for Few-Shot Learning
Malik Boudiaf (Ecole de Technologie Superieure) · Imtiaz Ziko (Ecole de technologie superieure (ETS)) · Jérôme Rony (ÉTS Montréal) · Jose Dolz (ETS Montreal) · Pablo Piantanida (CentraleSupélec - Mila) · Ismail Ben Ayed (ETS Montreal)
7、Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels
Massimiliano Patacchiola (University of Edinburgh) · Jack Turner (University of Edinburgh) · Elliot J. Crowley (University of Edinburgh) · Michael O'Boyle (University of Edinburgh) · Amos Storkey (University of Edinburgh)
8、OOD-MAML: Meta-Learning for Few-Shot Out-of-Distribution Detection and Classification
9、One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL
Saurabh Kumar (Stanford University) · Aviral Kumar (UC Berkeley) · Sergey Levine (UC Berkeley) · Chelsea Finn (Stanford)
10、Restoring Negative Information in Few-Shot Object Detection
Yukuan Yang (Tsinghua University) · Fangyun Wei (Microsoft Research Asia) · Miaojing Shi (King's College London) · Guoqi Li (Tsinghua University)11、Node Classification on Graphs with Few-Shot Novel Labels via Meta Transformed Network EmbeddingLin Lan (Xi'an Jiaotong University) · Pinghui Wang (Xi'an Jiaotong University) · Xuefeng Du (Xi'an Jiaotong University) · Kaikai Song (Huawei Noah's Ark Lab) · Jing Tao (Xi'an Jiaotong University) · Xiaohong Guan (Xi'an Jiaotong University)12、CrossTransformers: spatially-aware few-shot transferCarl Doersch (DeepMind) · Ankush Gupta (DeepMind) · Andrew Zisserman (DeepMind & University of Oxford)13、Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link PredictionJinheon Baek (KAIST) · Dong Bok Lee (KAIST) · Sung Ju Hwang (KAIST, AITRICS)14、Language Models are Few-Shot LearnersTom B Brown (Google Brain) · Benjamin Mann (OpenAI) · Nick Ryder (OpenAI) · Melanie Subbiah (OpenAI) · Jared D Kaplan (Johns Hopkins University) · Prafulla Dhariwal (OpenAI) · Arvind Neelakantan (OpenAI) · Pranav Shyam (OpenAI) · Girish Sastry (OpenAI) · Amanda Askell (OpenAI) · Sandhini Agarwal (OpenAI) · Ariel Herbert-Voss (OpenAI) · Gretchen M Krueger (OpenAI) · Tom Henighan (OpenAI) · Rewon Child (OpenAI) · Aditya Ramesh (OpenAI) · Daniel Ziegler (OpenAI) · Jeffrey Wu (OpenAI) · Clemens Winter (OpenAI) · Chris Hesse (OpenAI) · Mark Chen (OpenAI) · Eric Sigler (OpenAI) · Mateusz Litwin (OpenAI) · Scott Gray (OpenAI) · Benjamin Chess (OpenAI) · Jack Clark (OpenAI) · Christopher Berner (OpenAI) · Sam McCandlish (OpenAI) · Alec Radford (OpenAI) · Ilya Sutskever (OpenAI) · Dario Amodei (OpenAI)Zero-shot:5 篇
1、Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design
Michael Dennis (University of California Berkeley) · Natasha Jaques (MIT) · Eugene Vinitsky (UC Berkeley) · Alexandre Bayen (UC Berkeley)· Stuart Russell (UC Berkeley) · Andrew Critch (UC Berkeley) · Sergey Levine (UC Berkeley)
2、Dense Feature Composition for Zero-Shot Learning
Dat Huynh (Northeastern University) · Ehsan Elhamifar (Northeastern University)
3、Attribute Prototype Network for Zero-Shot Learning
Wenjia Xu (University of Chinese Academy of Sciences) · Yongqin Xian (Max Planck Institute Informatics) · Jiuniu Wang (City University of Hong Kong) · Bernt Schiele (Max Planck Institute for Informatics) · Zeynep Akata (University of Tübingen)
4、Uncertainty-Aware Learning for Zero-Shot Semantic Segmentation
Ping Hu (Boston University) · Stan Sclaroff (Boston University) · Kate Saenko (Boston University & MIT-IBM Watson AI Lab, IBM Research)
5、Consistent Structural Relation Learning for Zero-Shot Segmentation
Peike Li (University of Technology Sydney) · Yunchao Wei (UTS) · Yi Yang (UTS)
6、Modeling Task Effects on Meaning Representation in the Brain via Zero-Shot MEG Prediction
Mariya Toneva (Carnegie Mellon University) · Otilia Stretcu (Carnegie Mellon University) · Barnabas Poczos (Carnegie Mellon University) · Leila Wehbe (Carnegie Mellon University) · Tom Mitchell (Carnegie Mellon University)
1、Subgraph Neural Networks
Emily Alsentzer (MIT) · Samuel Finlayson (Harvard Medical School) · Michelle Li (Harvard Medical School) · Marinka Zitnik (Harvard University)
2、Can Graph Neural Networks Count Substructures?
Zhengdao Chen (New York University) · Lei Chen (New York University) · Soledad Villar (New York University) · Joan Bruna (NYU)
3、Factor Graph Neural Networks
Zhen Zhang (University of Adelaide) · Fan Wu (Nanjing University) · Wee Sun Lee (National University of Singapore)
4、Implicit Graph Neural Networks
Fangda Gu (UC Berkeley) · Heng Chang (Tsinghua University) · Wenwu Zhu (Tsinghua University) · Somayeh Sojoudi (University of California, Berkeley) · Laurent El Ghaoui (UC Berkeley)
5、Reliable Graph Neural Networks via Robust Location Estimation
Simon Geisler (Technical University of Munich) · Daniel Zügner (Technical University of Munich) · Stephan Günnemann (Technical University of Munich)
6、Attribution for Graph Neural Networks
Benjamin Sanchez-Lengeling (Google Research) · Jennifer Wei (Google Research) · Brian Lee (Google Inc.) · Emily Reif (Google) · Peter Wang (Columbia University) · Wesley Wei Qian (University of Illinois at Urbana-Champaign) · Kevin McCloskey (Google) · Lucy Colwell (Google) · Alexander Wiltschko (Google Brain)
7、Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting
Defu Cao (Peking University) · Yujing Wang (MSRA) · Juanyong Duan (Microsoft) · Ce Zhang (ETH Zurich) · Xia Zhu (Microsoft) · Congrui Huang (Microsoft) · Yunhai Tong (Peking University) · Bixiong Xu (Microsoft) · Jing Bai (Microsoft) · Jie Tong (Microsoft) · Qi Zhang (Microsoft)
8、GNNGuard: Defending Graph Neural Networks against Adversarial Attacks
Xiang Zhang (Harvard University) · Marinka Zitnik (Harvard University)
9、Towards Scale-Invariant Graph-related Problem Solving by Iterative Homogeneous GNNs
Hao Tang (Shanghai Jiao Tong University) · Zhiao Huang (University of California San Diego) · Jiayuan Gu (University of California, San Diego) · Bao-Liang Lu (Shanghai Jiao Tong University) · Hao Su (UCSD)
10、Distance Encoding -- Design Provably More Powerful GNNs for Structural Representation Learning
Pan Li (Stanford University - Purdue University) · Yanbang Wang (Stanford University) · Hongwei Wang (Stanford University) · Jure Leskovec (Stanford University and Pinterest)
11、Rethinking pooling in graph neural networks
Diego Mesquita (Aalto University) · Amauri Souza (IFCE) · Samuel Kaski (Aalto University and University of Manchester)
12、Design Space for Graph Neural Networks
Jiaxuan You (Stanford University) · Zhitao Ying (Stanford University) · Jure Leskovec (Stanford University and Pinterest)
13、Bandit Samplers for Training Graph Neural Networks
Ziqi Liu (Ant Financial) · Zhengwei Wu (Ant Financial) · Zhiqiang Zhang (Ant Financial Services Group) · Jun Zhou (Ant Financial) · Shuang Yang (Ant Financial) · Le Song (Ant Financial Services Group) · Yuan Qi (Ant Financial Services Group)
14、Pre-Training Graph Neural Networks: A Contrastive Learning Framework with Augmentations
Yuning You (Texas A&M University) · Tianlong Chen (Unversity of Texas at Austin) · Yongduo Sui (University of Science and Technology of China) · Ting Chen (Google) · Zhangyang Wang (University of Texas at Austin) · Yang Shen (Texas A&M University)
15、Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
Jiong Zhu (University of Michigan) · Yujun Yan (University of Michigan) · Lingxiao Zhao (Carnegie Mellon University) · Mark Heimann (University of Michigan) · Leman Akoglu (CMU) · Danai Koutra (U Michigan)
16、Scalable Graph Neural Networks via Bidirectional Propagation
Ming Chen (Renmin University of China) · Zhewei Wei (Renmin University of China) · Bolin Ding ("Data Analytics and Intelligence Lab, Alibaba Group") · Yaliang Li (Alibaba Group) · Ye Yuan ( Beijing Institute of Technology) · Xiaoyong Du (Renmin University of China) · Ji-Rong Wen (Renmin University of China)
17、Towards Deeper Graph Neural Networks with Differentiable Group Normalization
Kaixiong Zhou (Texas A&M University) · Xiao Huang (The Hong Kong Polytechnic University) · Yuening Li (Texas A&M University) · Daochen Zha (Texas A&M University) · Rui Chen (Samsung Research America) · Xia Hu (Texas A&M University)
18、Strongly Incremental Constituency Parsing with Graph Neural Networks
Kaiyu Yang (Princeton University) · Jia Deng (Princeton University)
19、Graphon Neural Networks and the Transferability of Graph Neural Networks
Luana Ruiz (University of Pennsylvania) · Luiz Chamon (University of Pennsylvania) · Alejandro Ribeiro (University of Pennsylvania)
20、Adversarial Attack on Graph Neural Networks with Limited Node Access
Jiaqi Ma (University of Michigan) · Shuangrui Ding (University of Michigan) · Qiaozhu Mei (University of Michigan)
21、Path Integral Based Convolution and Pooling for Graph Neural Networks
Zheng Ma (Princeton University) · Junyu Xuan (University of Technology Sydney) · Yu Guang Wang (University of New South Wales; MPI MiS) · Ming Li (Zhejiang Normal University) · Pietro Liò (University of Cambridge)
22、How hard is to distinguish graphs with graph neural networks?
Andreas Loukas (EPFL)
23、Parameterized Explainer for Graph Neural Network
Dongsheng Luo (The Pennsylvania State University) · Wei Cheng (NEC Labs America) · Dongkuan Xu (The Pennsylvania State University) · Wenchao Yu (UCLA) · Bo Zong (NEC Labs) · Haifeng Chen (NEC Labs America) · Xiang Zhang (The Pennsylvania State University)
24、Building powerful and equivariant graph neural networks with message-passing
Clément Vignac (EPFL) · Andreas Loukas (EPFL) · Pascal Frossard (EPFL)
25、Random Walk Graph Neural Networks
Giannis Nikolentzos (Athens University of Economics and Business) · Michalis Vazirgiannis (École Polytechnique)
26、Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks
David Bieber (Google Brain) · Charles Sutton (Google) · Hugo Larochelle (Google Brain) · Daniel Tarlow (Google Brain)
27、PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
Minh N Vu (University of Florida) · My T. Thai (University of Florida)
28、Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks
Kenta Oono (The University of Tokyo, Preferred Networks Inc.) · Taiji Suzuki (The University of Tokyo/RIKEN-AIP)
1、Cross-scale Internal Graph Convolution Network for Image Super-Resolution
Shangchen Zhou (Nanyang Technological University) · Jiawei Zhang (Sensetime Research) · Wangmeng Zuo (Harbin Institute of Technology) · Chen Change Loy (Nanyang Technological University)
2、Certified Robustness of Graph Convolution Networks for Graph Classification under Topological Attacks
Hongwei Jin (University of Illinois at Chicago) · Zhan Shi (University of Illinois at Chicago) · Venkata Jaya Shankar Ashish Peruri (University of Illinois at Chicago) · Xinhua Zhang (UIC)
胶囊网络:1 篇
自编码器 Autoencoder:11 篇
1、Autoencoders that don't overfit towards the Identity
Harald Steck (Netflix)
2、Swapping Autoencoder for Deep Image Manipulation
Taesung Park (UC Berkeley) · Jun-Yan Zhu (Adobe, CMU) · Oliver Wang (Adobe Research) · Jingwan Lu (Adobe Research) · Eli Shechtman (Adobe Research, US) · Alexei Efros (UC Berkeley) · Richard Zhang (Adobe)
3、Hierarchical Quantized Autoencoders
Will Williams (Speechmatics) · Sam Ringer (Speechmatics) · Tom Ash (Speechmatics) · David MacLeod (Speechmatics) · Jamie Dougherty (Speechmatics) · John Hughes (Speechmatics)
4、Implicit Rank-Minimizing Autoencoder
Li Jing (Facebook AI Research) · Jure Zbontar (Facebook) · yann lecun (Facebook)
5、Dirichlet Graph Variational Autoencoder
Jia Li (The Chinese University of Hong Kong) · Jianwei Yu (CUHK) · Jiajin Li (The Chinese University of Hong Kong) · Honglei Zhang (Georgia Institute of Technology) · Kangfei Zhao (The Chinese University of Hong Kong) · Yu Rong (Tencent AI Lab) · Hong Cheng (The Chinese University of Hong Kong) · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
6、Regularized linear autoencoders recover the principal components, eventually
Xuchan Bao (University of Toronto) · James Lucas (University of Toronto) · Sushant Sachdeva (University of Toronto) · Roger Grosse (University of Toronto)
7、Fully Convolutional Mesh Autoencoder using Efficient Spatially Varying Kernels
Yi Zhou (University of Southern California) · Chenglei Wu (Facebook) · Zimo Li (University of Southern California) · Chen Cao (Snap Inc.) · Yuting Ye (Facebook Reality Labs) · Jason Saragih (Facebook) · Hao Li (Pinscreen/University of Southern California/USC ICT) · Yaser Sheikh (Facebook Reality Labs)
8、The Autoencoding Variational Autoencoder
Taylan Cemgil (DeepMind) · Sumedh Ghaisas (DeepMind) · Krishnamurthy Dvijotham (DeepMind) · Sven Gowal (DeepMind) · Pushmeet Kohli (DeepMind)
9、Recursive Inference for Variational Autoencoders
Minyoung Kim (Samsung AI Center) · Vladimir Pavlovic (Rutgers University)
10、NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat (NVIDIA) · Jan Kautz (NVIDIA)
11、Evidential Sparsification of Multimodal Latent Spaces in Conditional Variational Autoencoders
Masha Itkina (Stanford University) · Boris Ivanovic (Stanford University) · Ransalu Senanayake (Stanford University) · Mykel J Kochenderfer (Stanford University) · Marco Pavone (Stanford University)
7
量化、剪枝、压缩、NAS
量化:7 篇
1、Adaptive Gradient Quantization for Data-Parallel SGD
Fartash Faghri (University of Toronto) · Iman Tabrizian (University of Toronto) · Ilia Markov (IST Austria) · Dan Alistarh (IST Austria & Neural Magic Inc.) · Daniel Roy (Univ of Toronto & Vector) · Ali Ramezani-Kebrya (Vector Institute)
2、Robust Quantization: One Model to Rule Them All
Moran Shkolnik (Intel) · Brian Chmiel (Intel) · Ron Banner (Intel - Artificial Intelligence Products Group (AIPG)) · Gil Shomron (Technion - Israel Institute of Technology) · Yury Nahshan (Intel - Artificial Intelligence Products Group (AIPG)) · Alex Bronstein (Technion) · Uri Weiser (Technion - Israel Institute of Technology)
3、Position-based Scaled Gradient for Model Quantization and Sparse Training
Jangho Kim (Seoul National University) · KiYoon Yoo (Seoul National University) · Nojun Kwak (Seoul National University)
4、AMQ: Automatic Mixed-precision Quantization Based on Hessian Trace
Zhen Dong (UC Berkeley) · Zhewei Yao (UC Berkeley) · Daiyaan Arfeen (UC Berkeley) · Amir Gholami (University of California, Berkeley) · Michael Mahoney (UC Berkeley) · Kurt Keutzer (EECS, UC Berkeley)
5、FleXOR: Trainable Fractional Quantization
Dongsoo Lee (Samsung Research) · Se Jung Kwon (Samsung Research) · Byeongwook Kim (Samsung Research) · Yongkweon Jeon (Samsung Research) · Baeseong Park (samsung research) · Jeongin Yun (Samsung Research)
6、Closing the Dequantization Gap: PixelCNN as a Single-Layer Flow
Didrik Nielsen (DTU Compute) · Ole Winther (DTU and KU)
7、Bayesian Bits: Unifying Quantization and Pruning
Mart van Baalen (Qualcomm) · Christos Louizos (Qualcomm AI Research) · Markus Nagel (Qualcomm) · Rana Ali Amjad (Qualcomm) · Ying Wang (Qualcomm) · Tijmen Blankevoort (Qualcomm) · Max Welling (University of Amsterdam / Qualcomm AI Research)
剪枝:14 篇
1、Pruning Filter in Filter
Fanxu Meng (Harbin Institute of Technology, Shenzhen) · Hao Cheng (Tencent) · Ke Li (Tencent) · Huixiang Luo (Tencent) · Xiaowei Guo (Tencent Youtu Lab) · Guangming Lu (Harbin Institute of Technology, Shenzhen) · Xing Sun (Tencent)
2、Pruning neural networks without any data by conserving synaptic flow
Hidenori Tanaka (NTT Research, PHI Lab / Stanford University) · Daniel Kunin (Stanford University) · Daniel Yamins (Stanford University) · Surya Ganguli (Stanford)
3、Network Pruning via Greedy Optimization: Fast Rate and Efficient Algorithms
Mao Ye (The University of Texas at Austin) · Lemeng Wu (UT Austin) · Qiang Liu (UT Austin)
4、HYDRA: Pruning Adversarially Robust Neural Networks
Vikash Sehwag (Princeton University) · Shiqi Wang (Columbia) · Prateek Mittal (Princeton University) · Suman Jana (Columbia University)
5、Logarithmic Pruning is All You Need
Laurent Orseau (DeepMind) · Marcus Hutter (DeepMind) · Omar Rivasplata (DeepMind & UCL)
6、Bayesian Bits: Unifying Quantization and Pruning
Mart van Baalen (Qualcomm) · Christos Louizos (Qualcomm AI Research) · Markus Nagel (Qualcomm) · Rana Ali Amjad (Qualcomm) · Ying Wang (Qualcomm) · Tijmen Blankevoort (Qualcomm) · Max Welling (University of Amsterdam / Qualcomm AI Research)
7、Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot
Jingtong Su (Peking University) · Yihang Chen (Peking University) · Tianle Cai (Peking University) · Tianhao Wu (Peking University) · Ruiqi Gao (Peking University) · Liwei Wang (Peking University) · Jason Lee (Princeton University)
8、Scientific Control for Reliable Neural Network Pruning
Yehui Tang (Peking University) · Yunhe Wang (Huawei Noah's Ark Lab) · Yixing Xu (Huawei Noah's Ark Lab) · Dacheng Tao (University of Sydney) · Chunjing XU (Huawei Technologies) · Chao Xu (Peking University) · Chang Xu (University of Sydney)
9、Neuron-level Structured Pruning using Polarization Regularizer
Tao Zhuang (Alibaba Group) · Zhixuan Zhang (Beijing University of Posts and Telecommunications) · Yuheng Huang (Beijing Univ. of Posts and Telecommunications) · Xiaoyi Zeng (Alibaba Group) · Kai Shuang (State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China.) · Xiang Li (Alibaba Group)
10、Directional Pruning of Deep Neural Networks
Shih-Kang Chao (University of Missouri) · Zhanyu Wang (Purdue University) · Yue Xing (Purdue University) · Guang Cheng (Purdue University)
11、Storage Efficient and Dynamic Flexible Runtime Channel Pruning via Deep Reinforcement Learning
Jianda Chen (Nanyang Technological University) · Shangyu Chen (Nanyang Technological University, Singapore) · Sinno Jialin Pan (Nanyang Technological University, Singapore)
12、Movement Pruning: Adaptive Sparsity by Fine-Tuning
Victor Sanh (Hugging Face 🤗) · Thomas Wolf (Hugging Face) · Alexander Rush (Cornell University)
13、The Generalization-Stability Tradeoff In Neural Network Pruning
Brian Bartoldson (Florida State University) · Ari Morcos (Facebook AI Research) · Adrian Barbu (Florida State University, USA) · Gordon Erlebacher (Florida State University)
14、Bayesian Bits: Unifying Quantization and Pruning
Mart van Baalen (Qualcomm) · Christos Louizos (Qualcomm AI Research) · Markus Nagel (Qualcomm) · Rana Ali Amjad (Qualcomm) · Ying Wang (Qualcomm) · Tijmen Blankevoort (Qualcomm) · Max Welling (University of Amsterdam / Qualcomm AI Research)
压缩:10 篇
1、Universally Quantized Neural Compression
Eirikur Agustsson (Google) · Lucas Theis (Twitter)
Chong Yu (NVIDIA) · Chong Yu (Intel)
2、High-Fidelity Generative Image Compression
Fabian Mentzer (ETH Zurich) · George D Toderici (Google) · Michael Tschannen (Google Brain) · Eirikur Agustsson (Google)
3、MuSCLE: Multi Sweep Compression of LiDAR using Deep Entropy Models
Sourav Biswas (University of Waterloo) · Jerry Liu (Uber ATG) · Kelvin Wong (University of Toronto) · Shenlong Wang (University of Toronto) · Raquel Urtasun (Uber ATG)
4、Improving Inference for Neural Image Compression
Yibo Yang (University of California, Irivine) · Robert Bamler (University of California at Irvine) · Stephan Mandt (University of California, Irivine)
5、Practical Low-Rank Communication Compression in Decentralized Deep Learning
Thijs Vogels (EPFL) · Sai Praneeth Karimireddy (EPFL) · Martin Jaggi (EPFL)
6、Attribution Preservation in Network Compression for Reliable Network Interpretation
Geondo Park (Korea Advanced Institute of Science and Technology) · June Yong Yang (Korea Advanced Institute of Science and Technology) · Sung Ju Hwang (KAIST, AITRICS) · Eunho Yang (Korea Advanced Institute of Science and Technology; AItrics)
7、Self-Supervised Generative Adversarial Compression
Chong Yu (NVIDIA) · Chong Yu (Intel)
8、ScaleCom: Scalable Sparsified Gradient Compression for Communication-Efficient Distributed Training
Chia-Yu Chen (IBM research) · Jiamin Ni (IBM) · Songtao Lu (IBM) · Xiaodong Cui (IBM T. J. Watson Research Center) · Pin-Yu Chen (IBM Research AI) · Xiao Sun (IBM Thomas J. Watson Research Center) · Naigang Wang (IBM T. J. Watson Research Center) · Swagath Venkataramani (IBM Research) · Vijayalakshmi (Viji) Srinivasan (IBM TJ Watson) · Wei Zhang (IBM T.J.Watson Research Center) · Kailash Gopalakrishnan (IBM Research)
9、MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers
Wenhui Wang (MSRA) · Furu Wei (Microsoft Research Asia) · Li Dong (Microsoft Research) · Hangbo Bao (Harbin Institute of Technology) · Nan Yang (Microsoft Research Asia) · Ming Zhou (Microsoft Research)
WoodFisher: Efficient Second-Order Approximation for Neural NetworkCompression
Sidak Pal Singh (EPFL) · Dan Alistarh (IST Austria & Neural Magic Inc.)
NAS:12 篇
1、ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse Coding
Yibo Yang (Peking University) · Hongyang Li (Peking University) · Shan You (SenseTime) · Fei Wang (SenseTime) · Chen Qian (SenseTime) · Zhouchen Lin (Peking University)
2、BRP-NAS: Prediction-based NAS using GCNs
Thomas Chau (Samsung AI Center Cambridge) · Lukasz Dudziak (Samsung AI Center Cambridge) · Mohamed Abdelfattah (Samsung AI Centre Cambridge) · Royson Lee (Samsung AI Center Cambridge) · Hyeji Kim (Samsung AI Center Cambridge) · Nicholas Lane (Samsung AI Center Cambridge & University of Oxford)
3、Bridging the Gap between Sample-based and One-shot Neural Architecture Search with BONAS
Han Shi (Hong Kong University of Science and Technology) · Renjie Pi (Huawei Noah’s Ark Lab) · Hang Xu (Huawei Noah's Ark Lab) · Zhenguo Li (Noah's Ark Lab, Huawei Tech Investment Co Ltd) · James Kwok (Hong Kong University of Science and Technology) · Tong Zhang (Hong Kong University of Science and Technology)
4、CryptoNAS: Private Inference on a ReLU Budget
Zahra Ghodsi (New York University) · Akshaj Kumar Veldanda (New York University) · Brandon Reagen (New York University) · Siddharth Garg (NYU)
5、ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse Coding
Yibo Yang (Peking University) · Hongyang Li (Peking University) · Shan You (SenseTime) · Fei Wang (SenseTime) · Chen Qian (SenseTime) · Zhouchen Lin (Peking University)
6、BRP-NAS: Prediction-based NAS using GCNs
Thomas Chau (Samsung AI Center Cambridge) · Lukasz Dudziak (Samsung AI Center Cambridge) · Mohamed Abdelfattah (Samsung AI Centre Cambridge) · Royson Lee (Samsung AI Center Cambridge) · Hyeji Kim (Samsung AI Center Cambridge) · Nicholas Lane (Samsung AI Center Cambridge & University of Oxford)
7、Differentiable Neural Architecture Search in Equivalent Space with Exploration Enhancement
Miao Zhang (UTS&BIT) · Huiqi Li (Beijing Institute of Technology) · Shirui Pan (Monash University) · Xiaojun Chang (Monash University) · Zongyuan Ge (Monash University) · Steven Su (University of Technology Sydney)
8、Hierarchical Neural Architecture Search for Deep Stereo Matching
Xuelian Cheng (Monash University) · Yiran Zhong (Australian National University) · Mehrtash T Harandi (Monash University) · Yuchao Dai (Northwestern Polytechnical University) · Xiaojun Chang (Monash University) · Hongdong Li (Australian National University) · Tom Drummond (Monash University) · Zongyuan Ge (Monash University)
9、A Study on Encodings for Neural Architecture Search
Colin White (RealityEngines.AI) · Willie Neiswanger (Carnegie Mellon University) · Sam Nolen (RealityEngines.AI) · Yash Savani (RealityEngines.AI)
10、Cream of the Crop: Distilling Prioritized Paths For One-Shot Neural Architecture Search
Houwen Peng (Microsoft Research) · Hao Du (Microsoft Research) · Hongyuan Yu (MSRA) · QI LI (Tsinghua Univeristy) · Jing Liao (City University of Hong Kong) · Jianlong Fu (Microsoft Research)
11、CLEARER: Multi-Scale Neural Architecture Search for Image Restoration
Yuanbiao Gou (College of Computer Science, Sichuan University) · Boyun Li (College of Computer Science, Sichuan University) · Zitao Liu (TAL AI Lab) · Songfan Yang (TAL AI Lab) · Xi Peng (Institute for Infocomm, Research Agency for Science, Technology and Research (A*STAR) Singapore)
12、Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan (Michigan State University) · Yu Zheng (Michigan State University) · Wei Ao (Michigan State University) · Xiao Zeng (Michigan State University) · Mi Zhang (Michigan State University)
8
优化
贝叶斯优化:14 篇
1、Bayesian Optimization over String Spaces
Henry Moss (Lancaster University) · David Leslie (Lancaster University and PROWLER.io) · Daniel Beck (University of Melbourne) · Javier Gonzalez (Amazon.com) · Paul Rayson (Lancaster University)
2、Bayesian Optimization of Risk Measures
Sait Cakmak (Georgia Institute of Technology) · Raul Astudillo Marban (Cornell University) · Peter Frazier (Cornell / Uber) · Enlu Zhou (Georgia Institute of Technology)
3、Bayesian Optimization for Iterative Learning
Vu Nguyen (University of Oxford) · Sebastian Schulze (University of Oxford) · Michael A Osborne (U Oxford)
4、Modular Bayesian Optimization with BoTorch: An Efficient Differentiable Monte-Carlo Approach
Maximilian Balandat (Facebook) · Brian Karrer (Facebook) · Daniel Jiang (Facebook) · Samuel Daulton (Facebook) · Ben Letham (Facebook) · Andrew Gordon Wilson (New York University)· Eytan Bakshy (Facebook)
5、Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization
Samuel Daulton (Facebook) · Maximilian Balandat (Facebook) · Eytan Bakshy (Facebook)
6、Federated Bayesian Optimization via Thompson Sampling
Zhongxiang Dai (National University of Singapore) · Bryan Kian Hsiang Low (National University of Singapore) · Patrick Jaillet (MIT)
7、Multi-Fidelity Bayesian Optimization via Deep Neural Networks
Shibo Li (University of Utah) · Wei Xing (University of Utah) · Robert Kirby (University of Utah) · Shandian Zhe (University of Utah)
8、Diversity-Guided Multi-Objective Bayesian Optimization With Batch Evaluations
Mina Konakovic Lukovic (Massachusetts Institute of Technology) · Yunsheng Tian (Massachusetts Institute of Technology) · Wojciech Matusik (MIT)
9、Fast Matrix Square Roots with Applications to Gaussian Processes andBayesian Optimization
Geoff Pleiss (Columbia University) · Martin Jankowiak (Uber AI Labs) · David Eriksson (Facebook) · Anil Damle (Cornell University) · Jacob Gardner (University of Pennsylvania)
10、Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization
Ben Letham (Facebook) · Roberto Calandra (Facebook AI Research) · Akshara Rai (Facebook) · Eytan Bakshy (Facebook)
11、Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees
Shali Jiang (Washington University in St. Louis) · Daniel Jiang (Facebook) · Maximilian Balandat (Facebook) · Brian Karrer (Facebook) · Jacob Gardner (University of Pennsylvania) · Roman Garnett (Washington University in St. Louis)
12、Efficient Exploration of Reward Functions in Inverse Reinforcement Learning via Bayesian Optimization
Sreejith Balakrishnan (National University of Singapore) · Quoc Phong Nguyen (National University of Singapore) · Bryan Kian Hsiang Low (National University of Singapore) · Harold Soh (National University Singapore)
13、High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds
Noémie Jaquier (Karlsruhe Institute of Technology) · Leonel Rozo (Bosch Center for Artificial Intelligence)
14、High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization
Qing Feng (Facebook) · Ben Letham (Facebook) · Hongzi Mao (MIT) · Eytan Bakshy (Facebook)
15、Bayesian Robust Optimization for Imitation Learning
Daniel Brown (The University of Texas at Austin) · Scott Niekum (UT Austin) · Marek Petrik (University of New Hampshire)
凸优化:10 篇
1、Convex optimization based on global lower second-order models
Nikita Doikov (Catholic University of Louvain) · Yurii Nesterov (Catholic University of Louvain (UCL))
2、A convex optimization formulation for multivariate regression
Yunzhang Zhu (Ohio State University)
3、Optimal Query Complexity of Secure Stochastic Convex Optimization
Wei Tang (Washington University in St.Louis) · Chien-Ju Ho (Washington University in St. Louis) · Yang Liu (UC Santa Cruz)
4、Generalization error in high-dimensional perceptrons: Approaching Bayes error with convex optimization
Benjamin Aubin (Ipht Saclay) · Florent Krzakala (ENS Paris, Sorbonnes Université & EPFL) · Yue Lu (Harvard University) · Lenka Zdeborová (University Paris-Saclay & EPFL)
5、Can Implicit Bias Explain Generalization? Stochastic Convex Optimization as a Case Study
Assaf Dauber (Tel-Aviv University) · Meir Feder (Tel-Aviv University) · Tomer Koren (Google) · Roi Livni (Tel Aviv University)
6、Leveraging predictions in smoothed online convex optimization via gradient-based algorithms
Yingying Li (Harvard University) · Na Li (Harvard University)
7、An efficient nonconvex reformulation of stagewise convex optimizationproblems
Srinadh Bhojanapalli (Google AI) · Rudy Bunel (Deepmind) · Krishnamurthy Dvijotham (DeepMind) · Oliver Hinder (University of Pittsburgh)
8、Understanding spiking networks through convex optimization
Allan Mancoo (Champalimaud Centre for the Unknown) · Sander Keemink (Champalimaud Centre for the Unknown) · Christian K Machens (Champalimaud Centre for the Unknown)
9、Minimax Regret of Switching-Constrained Online Convex Optimization: No Phase Transition
Lin Chen (University of California, Berkeley) · Qian Yu (University of Southern California) · Hannah Lawrence (Flatiron Institute) · Amin Karbasi (Yale)
10、Online Convex Optimization Over Erdos-Renyi Random Networks
Jinlong Lei (Tongji University) · Peng Yi (Tongji University) · Yiguang Hong (Academy of Mathematics and Systems Science, Chinese Academy of Sciences) · Jie Chen (Beijing Institute of Technology) · Guodong Shi (University of Sydney)
非凸优化:4 篇
1、Second Order Optimality in Decentralized Non-Convex Optimization via Perturbed Gradient Tracking
Isidoros Tziotis (UT Austin) · Constantine Caramanis (UT Austin) · Aryan Mokhtari (UT Austin)
2、Improved Analysis of Clipping Algorithms for Non-convex Optimization
Bohang Zhang (Peking University) · Jikai Jin (Peking University) · Cong Fang (Peking University) · Liwei Wang (Peking University)
3、Online Non-Convex Optimization with Inexact Models
Amélie Héliou (Criteo AI Lab) · Matthieu Martin (Criteo) · Panayotis Mertikopoulos (CNRS (French National Center for Scientific Research)) · Thibaud J Rahier (INRIA)
4、Breaking Reversibility Accelerates Langevin Dynamics for Non-Convex Optimization
Xuefeng GAO (The Chinese University of Hong Kong) · Mert Gurbuzbalaban (Rutgers) · Lingjiong Zhu (Florida State University)
1、Second Order Optimality in Decentralized Non-Convex Optimization via Perturbed Gradient TrackingIsidoros Tziotis (UT Austin) · Constantine Caramanis (UT Austin) · Aryan Mokhtari (UT Austin)
2、Improved Analysis of Clipping Algorithms for Non-convex Optimization
Bohang Zhang (Peking University) · Jikai Jin (Peking University) · Cong Fang (Peking University) · Liwei Wang (Peking University)
3、Online Non-Convex Optimization with Inexact Models
Amélie Héliou (Criteo AI Lab) · Matthieu Martin (Criteo) · Panayotis Mertikopoulos (CNRS (French National Center for Scientific Research)) · Thibaud J Rahier (INRIA)
4、Breaking Reversibility Accelerates Langevin Dynamics for Non-Convex Optimization
Xuefeng GAO (The Chinese University of Hong Kong) · Mert Gurbuzbalaban (Rutgers) · Lingjiong Zhu (Florida State University)
5、Finding Second-Order Stationary Points Efficiently in Smooth NonconvexLinearly Constrained Optimization Problems
Songtao Lu (IBM Research) · Meisam Razaviyayn (University of Southern California) · Bo Yang (University of Minnesota) · Kejun Huang (University of Florida) · Mingyi Hong (University of Minnesota)
策略优化:7 篇
1、POMO: Policy Optimization with Multiple Optima for Reinforcement Learning
Yeong-Dae Kwon (Samsung SDS) · Jinho Choo (Samsung SDS) · Byoungjip Kim (Samsung SDS) · Iljoo Yoon (Samsung SDS) · Youngjune Gwon (Samsung SDS) · Seungjai Min (Samsung SDS)
2、Model-based Policy Optimization with Unsupervised Model Adaptation
Jian Shen (Shanghai Jiao Tong University) · Han Zhao (Carnegie Mellon University) · Weinan Zhang (Shanghai Jiao Tong University) · Yong Yu (Shanghai Jiao Tong Unviersity)
3、Dynamic Regret of Policy Optimization in Non-stationary Environments
Yingjie Fei (Cornell University) · Zhuoran Yang (Princeton) · Zhaoran Wang (Northwestern University) · Qiaomin Xie (Cornell University)
4、MOPO: Model-based Offline Policy Optimization
Tianhe Yu (Stanford University) · Garrett W. Thomas (Stanford University) · Lantao Yu (Stanford University) · Stefano Ermon (Stanford) · James Zou (Stanford University) · Sergey Levine (UC Berkeley) · Chelsea Finn (Stanford) · Tengyu Ma (Stanford University)
5、Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization
Paul Barde (Quebec AI institute - Ubisoft La Forge) · Julien Roy (Mila) · Wonseok Jeon (MILA, McGill University) · Joelle Pineau (McGill University) · Chris Pal (MILA, Polytechnique Montréal, Element AI) · Derek Nowrouzezahrai (McGill University)
6、Minimax Confidence Interval for Off-Policy Evaluation and Policy Optimization
Nan Jiang (University of Illinois at Urbana-Champaign) · Jiawei Huang (University of Illinois at Urbana-Champaign)
7、How to Learn a Useful Critic? Model-based Action-Gradient-Estimator Policy Optimization
Pierluca D'Oro (MILA) · Wojciech Jaśkowski (NNAISENSE SA)
其他优化:57 篇
1、Black-B ox Optimization with Local Generative Surrogates
Sergey Shirobokov (Imperial College London) · Vladislav Belavin (National Research University Higher School of Economics) · Michael Kagan (SLAC / Stanford) · Andrei Ustyuzhanin (National Research University Higher School of Economics) · Atilim Gunes Baydin (University of Oxford)
2、Scalable Black-box Optimization by Learnable Search Space Partition
Linnan Wang (Brown University) · Rodrigo Fonseca (Brown University) · Yuandong Tian (Facebook AI Research)
3、Improving model calibration with accuracy versus uncertainty optimization
Ranganath Krishnan (Intel Labs) · Omesh Tickoo (Intel)
4、Stochastic Optimization for Performative Prediction
Celestine Mendler-Dünner (UC Berkeley) · Juan Perdomo (University of California, Berkeley) · Tijana Zrnic (UC Berkeley) · Moritz Hardt (University of California, Berkeley)
5、Unfolding the Alternating Optimization for Blind Super Resolution
zhengxiong luo (中国科学院自动化所) · Yan Huang (CRIPAC, CASIA) · Shang Li (CASIA) · Liang Wang (NLPR, China) · Tieniu Tan (Chinese Academy of Sciences)
6、Dual-Free Stochastic Decentralized Optimization with Variance Reduction
Hadrien Hendrikx (INRIA - PSL) · Francis Bach (INRIA - Ecole Normale Superieure) · Laurent Massoulié (Inria)
7、Black-Box Certification with Randomized Smoothing: A FunctionalOptimization Based Framework
Dinghuai Zhang (Peking University) · Mao Ye (The University of Texas at Austin) · Chengyue Gong (Peking University) · Zhanxing Zhu (Peking University) · Qiang Liu (UT Austin)
8、Projection Robust Wasserstein Distance and Riemannian Optimization
Tianyi Lin (UC Berkeley) · Chenyou Fan (The Chinese University of Hong Kong, Shenzhen) · Nhat Ho (University of Texas at Austin) · Marco Cuturi (Google Brain & CREST - ENSAE) · Michael Jordan (UC Berkeley)
9、Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder (University of Oxford) · Vu Nguyen (University of Oxford) · Stephen J Roberts (University of Oxford)
10、Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalán Borsos (ETH Zurich) · Mojmir Mutny (ETH Zurich) · Andreas Krause (ETH Zurich)
11、Semialgebraic Optimization for Lipschitz Constants of ReLU Networks
Tong Chen (LAAS-CNRS) · Jean B Lasserre (lasserre@laas.fr) · Victor Magron (LAAS-CNRS) · Edouard Pauwels (IRIT)
Stochastic Variance Reduced Accelerated Dual Averaging for Finite-SumOptimization
Chaobing Song (Tsinghua University) · Yong Jiang (Tsinghua) · Yi Ma (UC Berkeley)
12、Inference Stage Optimization for Cross-scenario 3D Human Pose Estimation
Jianfeng Zhang (NUS) · Xuecheng Nie (NUS) · Jiashi Feng (National University of Singapore)
13、Robust Optimization for Fairness with Noisy Protected Groups
Serena Wang (Google) · Wenshuo Guo (UC Berkeley) · Harikrishna Narasimhan (Google Research) · Andrew Cotter (Google) · Maya Gupta (Google) · Michael Jordan (UC Berkeley)
13、FedSplit: an algorithmic framework for fast federated optimization
Reese Pathak (University of California, Berkeley) · Martin Wainwright (UC Berkeley)
14、Robust, Accurate Stochastic Optimization for Variational Inference
Akash Kumar Dhaka (Aalto University) · Alejandro Catalina (Aalto University) · Michael Andersen (Aalto University) · Måns Magnusson (Aalto University) · Jonathan Huggins (Boston University) · Aki Vehtari (Aalto University)
15、First Order Constrained Optimization in Policy Space
Yiming Zhang (New York University) · Quan Vuong (University of California, San Diego) · Keith Ross (NYU Shanghai)
16、Reinforced Molecular Optimization with Neighborhood-Controlled Grammars
Chencheng Xu (Tsinghua University) · Qiao Liu (Tsinghua University) · Minlie Huang (Tsinghua University) · Tao Jiang (University of California - Riverside)
17、Advances in Black-Box VI: Normalizing Flows, Importance Weighting, andOptimization
Abhinav Agrawal (UMass Amherst) · Daniel Sheldon (University of Massachusetts Amherst) · Justin Domke (University of Massachusetts, Amherst)
18、Improved Algorithms for Convex-Concave Minimax Optimization
Yuanhao Wang (Tsinghua University) · Jian Li (Tsinghua University)
19、Biased Stochastic Gradient Descent for Conditional Stochastic Optimization
Yifan Hu (University of Illinois at Urbana-Champaign) · Siqi Zhang (University of Illinois at Urbana-Champaign) · Xin Chen (University of Illinois at Urbana-Champaign) · Niao He (UIUC)
20、Modeling and Optimization Trade-off in Meta-learning
Katelyn Gao (Intel Labs) · Ozan Sener (Intel Labs)
21、Online Optimization with Memory and Competitive Control
Guanya Shi (Caltech) · Yiheng Lin (California Institute of Technology) · Soon-Jo Chung (Caltech) · Yisong Yue (Caltech) · Adam Wierman (California Institute of Technology)
22、Automatically Learning Compact Quality-aware Surrogates forOptimization Problems
Kai Wang (Harvard University) · Bryan Wilder (Harvard University) · Andrew Perrault (Harvard University) · Milind Tambe (Harvard University/Google)
23、Bayesian filtering unifies adaptive and non-adaptive neural networkoptimization methods
Laurence Aitchison (University of Cambridge)
24、Model Inversion Networks for Model-Based Optimization
Aviral Kumar (UC Berkeley) · Sergey Levine (UC Berkeley)
25、Neural Architecture Generator Optimization
Robin Ru (Oxford University) · Pedro M Esperança (Huawei) · Fabio Maria Carlucci (Sapienza University of Rome)
26、Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining
Austin Tripp (University of Cambridge) · Erik Daxberger (University of Cambridge) · José Miguel Hernández-Lobato (University of Cambridge)
27、Guiding Deep Molecular Optimization with Genetic Exploration
Sung-Soo Ahn (KAIST) · Junsu Kim (KAIST) · Hankook Lee (Korea Advanced Institute of Science and Technology) · Jinwoo Shin (KAIST)
28、Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele (MPI for Intelligent Systems, Tübingen) · Giancarlo Fissore (Inria) · Adrián Javaloy (Saarland University) · Bernhard Schölkopf (MPI for Intelligent Systems) · Aapo Hyvarinen (University of Helsinki)
29、Fully Dynamic Algorithm for Constrained Submodular Optimization
Silvio Lattanzi (Google Research) · Slobodan Mitrović (MIT) · Ashkan Norouzi-Fard (Google Research) · Jakub Tarnawski (Microsoft Research) · Morteza Zadimoghaddam (Google Research)
30、Conic Descent and its Application to Memory-efficient Optimization over Positive Semidefinite Matrices
John Duchi (Stanford) · Oliver Hinder (University of Pittsburgh) · Andrew Naber (Stanford University) · Yinyu Ye (Standord)
31、Cooperative Multi-Player Bandit Optimization
Ilai Bistritz (Stanford) · Nicholas Bambos (Stanford University)
32、Exploiting Higher Order Smoothness in Derivative-free Optimization and Continuous Bandits
Arya Akhavan (ENSAE - IIT) · Massimiliano Pontil (IIT & UCL) · Alexandre Tsybakov (CREST, ENSAE)
33、Contextual Reserve Price Optimization in Auctions via Mixed Integer Programming
Joey Huchette (Rice University) · Haihao Lu (University of Chicago) · Hossein Esfandiari (Google Research) · Vahab Mirrokni (Google Research NYC)
34、Adaptive Importance Sampling for Finite-Sum Optimization and Sampling with Decreasing Step-Sizes
Ayoub El Hanchi (McGill University) · David Stephens (McGill University)
35、Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping
Eduard Gorbunov (Moscow Institute of Physics and Technology) · Marina Danilova (ICS RAS) · Alexander Gasnikov (MIPT & HSE)
36、Optimization and Generalization of Shallow Neural Networks with Quadratic Activation Functions
Stefano Sarao Mannelli (Institut de Physique Théorique) · Eric Vanden-Eijnden (New York University) · Lenka Zdeborová (University Paris-Saclay & EPFL)
37、Acceleration with a Ball Optimization Oracle
Yair Carmon (Stanford University) · Arun Jambulapati (Stanford University) · Qijia Jiang (Stanford University) · Yujia Jin (Stanford University) · Yin Tat Lee (UW) · Aaron Sidford (Stanford) · Kevin Tian (Stanford University
38、Large-Scale Methods for Distributionally Robust Optimization
Daniel Levy (Stanford University) · Yair Carmon (Stanford University) · John Duchi (Stanford) · Aaron Sidford (Stanford)
39、DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks
Dennis Wei (IBM Research) · Tian Gao (IBM Research AI) · yue yu (Lehigh University)
40、Online Linear Optimization with Many Hints
Aditya Bhaskara (University of Utah) · Ashok Cutkosky (Google Research) · Ravi Kumar (Google) · Manish Purohit (Google)
41、Tackling the Objective Inconsistency Problem in Heterogeneous FederatedOptimization
Jianyu Wang (Carnegie Mellon University) · Qinghua Liu (Princeton University) · Hao Liang (Carnegie Mellon University) · Gauri Joshi (Carnegie Mellon University) · H. Vincent Poor (Princeton University)
42、Debiasing Distributed Second Order Optimization with Surrogate Sketching and Scaled Regularization
Michal Derezinski (UC Berkeley) · Burak Bartan (Stanford University) · Mert Pilanci (Stanford) · Michael W Mahoney (UC Berkeley)
43、A Catalyst Framework for Minimax Optimization
Junchi Yang (University of Illinois) · Siqi Zhang (University of Illinois at Urbana-Champaign) · Negar Kiyavash (École Polytechnique Fédérale de Lausanne) · Niao He (UIUC)
44、A Novel Approach for Constrained Optimization in Graphical Models
Sara Rouhani (University of Texas at Dallas) · Tahrima Rahman (UT Dallas) · Vibhav Gogate (UT Dallas)
45、Network Pruning via Greedy Optimization: Fast Rate and Efficient Algorithms
Mao Ye (The University of Texas at Austin) · Lemeng Wu (UT Austin) · Qiang Liu (UT Austin)
Effective Dimension Adaptive Sketching Methods for Faster Regularized Least-Squares Optimization
Jonathan Lacotte (Stanford University) · Mert Pilanci (Stanford)
46、Reconciling Modern Deep Learning with Traditional Optimization Analyses: The Intrinsic Learning Rate
Zhiyuan Li (Princeton University) · Kaifeng Lyu (Tsinghua University) · Sanjeev Arora (Princeton University)
47、Gaussian Process Bandit Optimization of the Thermodynamic Variational Objective
Vu Nguyen (University of Oxford) · Vaden Masrani (University of British Columbia) · Rob Brekelmans (University of Southern California) · Michael A Osborne (U Oxford) · Frank Wood (University of British Columbia)
48、Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-MaxOptimization
Yan Yan (the University of Iowa) · Yi Xu (Alibaba Group U.S. Inc.) · Qihang Lin (University of Iowa) · Wei Liu (Tencent AI Lab) · Tianbao Yang (The University of Iowa)
49、Erdos Goes Neural: an Unsupervised Learning Framework for CombinatorialOptimization on Graphs
Nikolaos Karalias (EPFL) · Andreas Loukas (EPFL)
50、Stochastic Optimization with Laggard Data Pipelines
Naman Agarwal (Google) · Rohan Anil (Google) · Tomer Koren (Google) · Kunal Talwar (Google) · Cyril Zhang (Princeton University)
51、A Feasible Level Proximal Point Method for Nonconvex Sparse ConstrainedOptimization
Digvijay Boob (Georgia Institute of Technology) · Qi Deng (Shanghai University of Finance and Economics) · Guanghui Lan (Georgia Tech) · Yilin Wang (Shanghai University of Finance and Economics)
52、Conformal Symplectic and Relativistic Optimization
Guilherme Starvaggi Franca (University of California, Berkeley) · Jeremias Sulam (Johns Hopkins University) · Daniel Robinson (Johns Hopkins University) · Rene Vidal (Johns Hopkins University, USA)
53、Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces
Guy Lorberbom (Technion) · Chris J. Maddison (University of Toronto) · Nicolas Heess (Google DeepMind) · Tamir Hazan (Technion) · Daniel Tarlow (Google Brain)
54、A Simple and Efficient Smoothing Method for Accelerated Optimizationand Local Exploration
Kevin Scaman (Noah's Ark Lab, Huawei Technologies) · Ludovic DOS SANTOS (Huawei) · Merwan Barlier (Huawei Technologies) · Igor Colin (Huawei)
55、Delta-STN: Efficient Bilevel Optimization of Neural Networks using Structured Response Jacobians
Juhan Bae (University of Toronto) · Roger Grosse (University of Toronto)
56、Finer Metagenomic Reconstruction via Biodiversity Optimization
Simon Foucart (Texas A&M) · David Koslicki (Pennsylvania State University)
57、Optimal and Practical Algorithms for Smooth and Strongly Convex Decentralized Optimization
Dmitry Koralev (KAUST) · Adil SALIM (KAUST) · Peter Richtarik (KAUST)
9
可解释相关
Interpretable:10 篇
1、Interpretable and Personalized Apprenticeship Scheduling: Learning Interpretable Scheduling Policies from Heterogeneous User Demonstrations
Rohan Paleja (Georgia Institute of Technology) · Andrew Silva (Georgia Institute of Technology) · Letian Chen (Georgia Institute of Technology) · Matthew Gombolay (Georgia Institute of Technology)
2、Interpretable Sequence Learning for Covid-19 Forecasting
Sercan Arik (Google) · Chun-Liang Li (Google) · Martin Nikoltchev (Google) · Rajarishi Sinha (Google) · Arkady Epshteyn (Google) · Jinsung Yoon (Google) · Long Le (Google) · Vikas Menon (Google) · Shashank Singh (Google) · Yash Sonthalia (Google) · Hootan Nakhost (Google) · Leyou Zhang (Google) · Elli Kanal (Google) · Tomas Pfister (Google)
3、Incorporating Interpretable Output Constraints in Bayesian Neural Networks
Wanqian Yang (Harvard University) · Lars Lorch (Harvard) · Moritz Graule (Harvard University) · Himabindu Lakkaraju (Harvard) · Finale Doshi-Velez (Harvard)
4、ICAM: Interpretable Classification via Disentangled Representations and Feature Attribution Mapping
Cher Bass (King's College London) · Mariana da Silva (King's College London) · Carole Sudre (King's College London) · Petru-Daniel Tudosiu (King's College London) · Stephen Smith (FMRIB Centre - University of Oxford) · Emma Robinson (King's College)
5、How does this interaction affect me? Interpretable attribution for feature interactions
Michael Tsang (University of Southern California) · Sirisha Rambhatla (University of Southern California) · Yan Liu (University of Southern California)
6、Learning outside the Black-Box: The pursuit of interpretable models
Jonathan Crabbe (University of Cambridge) · Yao Zhang (University of Cambridge) · William Zame (UCLA) · Mihaela van der Schaar (University of Cambridge)
7、GANSpace: Discovering Interpretable GAN Controls
Erik Härkönen (Aalto University) · Aaron Hertzmann (Adobe) · Jaakko Lehtinen (Aalto University & NVIDIA) · Sylvain Paris (Adobe)
8、Interpretable multi-timescale models for predicting fMRI responses to continuous natural speech
Shailee Jain (The University of Texas at Austin) · Vy Vo (Intel Corporation) · Shivangi Mahto (The University of Texas at Austin) · Amanda LeBel (The University of Texas at Austin) · Javier Turek (Intel Labs) · Alexander Huth (The University of Texas at Austin)
9、Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE
Ding Zhou (Columbia University) · Xue-Xin Wei (University of Pennsylvania)
10、Towards Interpretable Natural Language Understanding with Explanations as Latent Variables
Wangchunshu Zhou (Beihang University) · Jinyi Hu (Tsinghua University) · Hanlin Zhang (South China University of Technology) · Xiaodan Liang (Sun Yat-sen University) · Maosong Sun (Tsinghua University) · Chenyan Xiong (Microsoft Research AI) · Jian Tang (Mila)
Explanation:10 篇
1、Decisions, Counterfactual Explanations and Strategic Behavior
Stratis Tsirtsis (MPI-SWS) · Manuel Gomez Rodriguez (Max Planck Institute for Software Systems)
2、Model Agnostic Multilevel Explanations
Karthikeyan Natesan Ramamurthy (IBM Research) · Bhanukiran Vinzamuri (IBM Research) · Yunfeng Zhang (IBM Research) · Amit Dhurandhar (IBM Research)
3、PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
Minh N Vu (University of Florida) · My T. Thai (University of Florida)
4、On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh (Carnegie Mellon University) · Been Kim (Google) · Sercan Arik (Google) · Chun-Liang Li (Google) · Tomas Pfister (Google) · Pradeep Ravikumar (Carnegie Mellon University)
5、Debugging Tests for Model Explanations
Julius Adebayo (MIT) · Michael Muelly (Stanford University) · Ilaria Liccardi (MIT) · Been Kim (Google)
6、How Can I Explain This to You? An Empirical Study of Deep Neural NetworkExplanation Methods
Jeya Vikranth Jeyakumar (University of California, Los Angeles) · Joseph Noor (University of California, Los Angeles) · Yu-Hsi Cheng (UCLA) · Luis Garcia (University of California, Los Angeles) · Mani Srivastava (UCLA)
7、Towards Interpretable Natural Language Understanding with Explanationsas Latent Variables
Wangchunshu Zhou (Beihang University) · Jinyi Hu (Tsinghua University) · Hanlin Zhang (South China University of Technology) · Xiaodan Liang (Sun Yat-sen University) · Maosong Sun (Tsinghua University) · Chenyan Xiong (Microsoft Research AI) · Jian Tang (Mila)
8、Generative causal explanations of black-box classifiers
Matthew O'Shaughnessy (Georgia Tech) · Gregory Canal (Georgia Institute of Technology) · Marissa Connor (Georgia Tech) · Christopher Rozell (Georgia Institute of Technology) · Mark Davenport (Georgia Institute of Technology)
9、Compositional Explanations of Neurons
Jesse Mu (Stanford University) · Jacob Andreas (MIT)
10、Learning Global Transparent Models consistent with Local ContrastiveExplanations
Tejaswini Pedapati (IBM Research) · Avinash Balakrishnan (IBM) · Karthikeyan Shanmugam (IBM Research, NY) · Amit Dhurandhar (IBM Research)
NeurIPS 2020 论文接收列表已出,欢迎大家投稿让更多的人了解你们的工作~
来源:AI科技评论