Bengio 认为,未来的深度神经网络应当能够实现 System2(逻辑分析系统),实现的是有意识的、有逻辑的、有规划的、可推理以及可以语言表达的系统。本文所讨论的 Logical Reasoning(逻辑推理)拟实现的就是 System2 中重点关注的有逻辑的(Logical)和可推理的(Reasoning)特点。
p 是从特征空间到原始符号的映射,即它是一个传统机器学习的感知模型;
∆C 是一组用 B 定义目标概念 C 的一阶逻辑子句,称为知识模型。
(1)
注:请注意,计算运算的具体规则在 B 中没有定义,即「0+0」、「0+1」和「1+1」的结果可以是「0」、「1」、「00」、「01」甚至「10」。缺失的计算规则形成知识模型 ∆C,这一部分是需要从数据中学习得到的。
1)ABL,机器学习模型由两层 CNN、一个两层多层感知器(MLP)和一个 softmax 层组成,逻辑诱因将 50 个位操作的计算规则集作为关系特征,决策模型为两层 MLP。实验中尝试了两种不同的设置:使用所有训练数据的 ABL-all 和仅使用长度为 5-8 的训练方程的 ABL-short。
2)可微神经计算机(Differentiable Neural Computer,DNC),这是一个与记忆有关的深层神经网络。
3)Transformer 网络,这是一个经过关注增强的深层神经网络,已经被证实在许多自然语言处理任务中是有效的。
4)双向长短期记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM),这是目前应用最广泛的序列数据学习的神经网络。为了处理图像输入,BiLSTM、DNC 和 Transformer 网络也使用与 ABLs 相同结构的 CNN 作为它们的输入层。所有的神经网络都是用一个从训练数据中随机抽取的验证集来调整的。
(1)
(2)
(4)
(5)
(6)
(7)
(8)
(9)
(12)
(13)
范畴推理(Categorical reasoning):目的是推理一个特定的概念是否属于一个特定的范畴。这种推理通常与量词相关,如「all/everyone/any」、「no」和「some」等。
充分条件推理(Sufficient conditional reasoning):假设推理的类型是基于 「如果 P,那么 Q」形式的条件陈述,其中 P 是前因,Q 是后因。
析取推理(Disjunctive reasoning):在这种推理中,前提是析取的,形式是「要么。或者。」,只要一个前提成立,结论就成立。
合取推理(Conjunctive reasoning):在这类推理中,前提是连词,形式是「两个。还有。」,只有当所有前提成立时,结论才成立。