Transformer 是现代深度学习领域一股令人敬畏的力量,它广泛应用于语言理解、图像处理等多个领域,并产生了极大的影响。过去几年,大量研究基于 Transformer 模型做出基础性改进。人们对此的巨大兴趣也激发了对更高效 Transformer 变体的研究。
其中 F_S 是子层模块,它要么是多头自注意力,要么是 position-wise 前馈层。
Auto Byte
专注未来出行及智能汽车科技
微信扫一扫获取更多资讯
Science AI
关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展
微信扫一扫获取更多资讯
自 2017 年诞生以来,Transformer 模型在自然语言处理、计算机视觉等多个领域得到广泛应用,并出现了大量变体。近期涌现的大量 Transformer 变体朝着更高效的方向演化,谷歌研究者对这类高效 Transformer 架构进行了综述。
Transformer 是现代深度学习领域一股令人敬畏的力量,它广泛应用于语言理解、图像处理等多个领域,并产生了极大的影响。过去几年,大量研究基于 Transformer 模型做出基础性改进。人们对此的巨大兴趣也激发了对更高效 Transformer 变体的研究。
其中 F_S 是子层模块,它要么是多头自注意力,要么是 position-wise 前馈层。
深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。
池化(Pooling)是卷积神经网络中的一个重要的概念,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。直觉上,这种机制能够有效的原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要。池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合。通常来说,CNN的卷积层之间都会周期性地插入池化层。
线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。
自注意力(Self-attention),有时也称为内部注意力,它是一种涉及单序列不同位置的注意力机制,并能计算序列的表征。自注意力在多种任务中都有非常成功的应用,例如阅读理解、摘要概括、文字蕴含和语句表征等。自注意力这种在序列内部执行 Attention 的方法可以视为搜索序列内部的隐藏关系,这种内部关系对于翻译以及序列任务的性能非常重要。